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Premise

Balancing the Grid
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How can generators know how much to produce?

1 Retail electricity market → public utility, serves/tracks demand
Customers do not see and do not respond to the real prices

2 Wholesale electricity market ≈ perfect competition for generators
A centralized optimization (run by an Independent System
Operator) provides prices
Multiple settlements: Day Ahead (DA) → Hour Ahead (HA) →
Real Time (RT) → Regulation . . . to manage load uncertainty
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Why are we not using more green electricity?
We are scheduling for Net consumption = Load - Renewable power

Advantage: inelastic net consumption is back compatible with
current electricity market
Problem: unsustainable. Large generator ramps + reserves for
dealing with uncertainty blow up costs and pollution
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Electric Consumption Flexibility

Demand is random but not truly inflexible, but today there is no
standard appliance interface to modulate it

Demand Response (DR) programs tap into the flexibility of
end-use demand for multiple purposes
But how much intrinsic flexibility does the aggergate demand
of a large appliance population have?

Definition: Plasticity
The potential shapes that the load of an appliance or a popoulation of
appliances can take
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The Smart Grid vision

Most of the work is on the home price response side
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The Smart Grid System Challenge
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Demand Response: The Aggregator Problem

Heterogenous population (...it is "The Internet of Things")
Challenge 1: Modeling the flexibility ex-ante in the market
Challenge 2: Real time control of the appliances
Challenge 3: Economics: Convincing the customers to participate
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Outline

PART I - Modeling Electric Load Flexibility ("Plasticity")
The plasticity of a canonical battery
Population models for a very large number of canonical batteries
Generalizing results to real appliances
Planning and control

PART II - Retail Markets with Plasticity
Designing retail prices and incentives
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Part I

Load Flexibility Models
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Various research camps

Tank model: Fill the flexible demand tank by the end of the day
[Lambert, Gilman, Lilienthal,’06], [Lamadrid, Mount, Zimmerman,
Murillo-Sanchez, ’11],[Papavasiliou, Oren ’10]

For the market, to set prices

Detailed model: Model each individual appliance constraints
[Joo,Ilic,’10], [Huang, Walrand, Ramchandran,’11], [Foster,Caramanis,’13]

For local controllers that respond to dynamic prices
Quantized Population Models: Cluster appliances and derive an
aggregate model [Chong85],[Mathieu,Koch, Callaway,’13],[Alizadeh,
Scaglione, Thomas,’12]...

Good for both! What we discuss next....
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Example of Load Plasticity: Ideal Battery
One ideal battery indexed by i

Arrives at ti and remains on indefinitely
No rate constraint
Initial charge of Si
Capacity Ei

The plasticity of battery i is defined as

Li(t) = {Li(t)|Li(t) = dxi(t)/dt, xi(ti) = Si, 0 ≤ xi(t) ≤ Ei, t ≥ ti}.

In English:
Load (power) = rate of change in state of charge x(t) (energy)

Set Li(t) characterized by appliance category v (ideal battery)
and 3 continuous parameters:

θi = (ti ,Si ,Ei)

But how can we capture the plasticity of thousands of these batteries?
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Aggregate Plasticity

We define the following operations on plasticities L1(t), L2(t):

L1(t) + L2(t) =
{

L(t)|L(t) = L1(t) + L2(t), (L1(t),L2(t)) ∈ L1(t)× L2(t)
}

nL(t) =
{

L(t)|L(t) =
n∑

k=1
Lk(t), (L1(t), ..,Ln(t)) ∈ Ln(t)

}
,

where n ∈ N and 0L1(t) ≡ {0}.
Then, the plasticity of a population Pv of ideal batteries is

Lv(t) =
∑
i∈Pv

Li(t) (1)

Plasticity of population = sum of individual plasticities

What if we have a very large population?
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Quantizing Plasticity

Natural step → quantize the paramaters: θi = (ti ,Si ,Ei)

θ 7→ ϑ ∈ Finite set T v

Quantize state and time uniformly with step δt = 1 and δx = 1
Discrete version (after sampling + quantization) of plasticity:

Li(t) = {Li(t)|Li(t) = ∂xi(t), xi(ti) = Si , xi(t) ∈ {0, 1, . . . ,Ei}, t ≥ ti}.

Plasticity of all batteries with discrete parameters ϑ = Lv
ϑ(t)
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Lowering the Complexity of Lv(t)?

Let av
ϑ(t) , number of batteries with discrete parameters ϑ

Lv(t) =
∑

ϑ∈T v

av
ϑ(t)Lv

ϑ(t),
∑

ϑ∈T v

av
ϑ(t) = |Pv|. (2)

v = 1, . . . ,V different categories of appliances

L(t) = LI(t) +
V∑

v=1
Lv(t), LI(t) = {LI(t)} inelastic load (3)

Still redundant for aggregate load modeling
The set

∑
ϑ av

ϑLv
ϑ(t) can be combined for some ϑ and

represented by fewer variables
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Bundling Appliances with Similar Constraints

Population Pv
E with homogenous E but different (ti ,Si)

Define arrival process for battery i

ai(t) = u(t − ti)→ indicator that battery i is plugged in

We prefer not to keep track of individual appliances
Random state arrival process on aggregate

ax(t) =
∑

i∈Pv
E

δ(Si − x)ai(t), x = 1, . . . ,E

Aggregate state occupancy

nx(t) =
∑

i∈Pv
E

δ(xi(t)− x)ai(t), x = 1, . . . ,E
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Aggregate load plasticity

Lemma
The relationship between load and occupancy is:

L(t) =
E∑

x=0

[( E∑
x′=x

∂nx′(t)
)
− (x + 1)∂ax(t)

]
.

Can we say more when the change in state is the result of a
control action?
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Effect of Control Actions

Activation process from state x ′ to x :

dx,x′(t) = # batteries that go from state x to state x ′ up to time t

Naturally, ∂dx,x′(t) ≤ nx(t).
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Controlled Aggregate Load Plasticity

Corollary
The relationship between occupancy, control and load are:

nx(t + 1) = ax(t + 1) +
E∑

x′=0
[dx′,x(t)− dx,x′(t)]

L(t) =
E∑

x=0

E∑
x′=0

(x ′ − x)∂dx,x′(t)

Notice the linear and simple nature of L(t) in terms of dx,x′(t)
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Bundling Batteries with Non-homogeneous Capacity

Results up to now are valid for batteries with homogenous
capacity E
The capacity changes the underlying structure of plasticity
We divide appliances into clusters q = 1, . . . ,Qv based on the
quantized value of Ei
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Quantized Linear Load Model

Load plasticity of heterogenous ideal battery population

Lv(t) =
{

L(t)|L(t) =
Q∑

q=1

Eq∑
x=0

Eq∑
x′=0

(x ′ − x)∂dq
x,x′(t)

∂dq
x,x′(t) ∈ Z+,

Eq∑
x′=1

∂dq
x,x′(t) ≤ nq

x (t)
}

nq
x (t) = aq

x (t) +
Eq∑

x′=0
[dq

x′,x(t − 1)− dq
x,x′(t − 1)]

Linear, and scalable at large-scale by removing integrality constraints

Aggregate model= Tank Model [Lambert, Gilman, Lilienthal,’06]
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More constrained models for load plasticity

The canonical battery can go from any state to any state and has
no deadline or other constraints.
What about real appliances? Some are simple extensions
Rate-constrained battery chage, e.g., V2G

Interruptible consumption at a constant rate, e.g., pool pump,
EV 1.1kW charge
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Deadlines

You can add deadlines using the same principle: cluster
appliances with the same deadline χq

Then, you simply express the constraint inside the plasticity set

Lv(t) =
{

L(t)|L(t) =
Qv∑

q=1

Eq∑
x=0

Eq∑
x′=0

(x ′ − x)∂dq
x,x′(t)

∂dq
x,x′(t) ∈ Z+,∀x, x ′ ∈ {0, 1, . . . ,Eq}

Eq∑
x′=1

∂dq
x,x′(t) ≤ nq

x (t),∀x < Eq → nx(χq) = 0
}

(4)
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Non-interruptible Appliances - Individual Plasticity

Loads that can be shifted within a time frame but cannot be
modified after activation, e.g., washer/dryers
xi(t) ∈ {0, 1} = state of appliance i (wainting/activated)
Impluse response of appliance i if activated at time 0 = gi(t)
Laxity (slack time) of χi

Li(t) ={Li(t)|Li(t) = gi(t) ? ∂xi(t), xi(t) ∈ {0, 1}, (5)
xi(t) ≥ ai(t − χi), xi(t − 1) ≤ xi(t) ≤ ai(t)}.

Load = change in state convolved with the load shape gi(t)

Note: dq
0,1(t) ≡ dq(t) ≡ xq(t)
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Non-interruptible Appliances - Aggregate Plasticity

We assign appliances to cluster q based on quantized pulses gq(t)
aq(t) = total number of arrivals in cluster q up to time t
dq(t) = total number of activations from cluster q up to time t

Lv(t)=
{

L(t)|L(t)=
Qv∑

q=1
gq(t) ? ∂dq(t), dq(t) ∈ Z+ (6)

dq(t) ≥ aq(t − χq), dq(t − 1) ≤ dq(t) ≤ aq(t)
}
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Other cases....

Dimmable Lighting, like Hybrid system, but you control gi(t)
instead of the switch state
Thermostatically Controlled Loads (TCL) require a bit more
effort but one can follow the same constructs
....you can soon get a pretty complete family of models
If it can shift demand, the Aggregator can hedge the electricity
market settlements.
The Aggregator needs to control the appliances. How?
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How can the Aggregator harness plasticity?

Two options to harness the population plasticity L(t)
Dynamic Pricing: The Aggregator sends a price signal, the
customers respond with a local Home/Building Energy
Management System
Direct Load Scheduling: The Aggregator provides different
pricing incentives, to control directly electric loads

In both cases, due to limited degrees of control on heterogenous
demand:

LDR(t) ⊆ L(t)

The price signal or incentive affects the arrival processes aq
x (t)
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Steps for the Aggregator Direct Load Scheduling (DLS)
Pricing Incentive design:

Design incentives to recruit appliances - - will discuss in part II
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Steps for the Aggregator Direct Load Scheduling (DLS)
Pricing Incentive design:

Design incentives to recruit appliances - will discuss in part II
Planning:

Forecast arrivals in clusters for different categories
Make optimal market decisions based on forecasted plasticity

Real-time:
Observe arrivals in clusters
Decide appliance schedules dq(t) to optimize load
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Real-time: How do we activating appliances?

Arrival and Activation Processes
aq(t) and dq(t) → total recruited appliances and activations before
time t in the q-th queue

Easy communications: Broadcast time stamp Tact :
aq(t − Tact) = dq(t)

Appliance whose arrival is prior than Tact. initiate to draw power
based on the broadcast control message
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Population modeling with the Tank Model

Population of 40000 PHEVs + 1.1 kW non-interruptible charging
Tank model = PHEVs effectively modeled as canonical batteries
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Uncontrolled load profile
Optimized DA bid using tank model
Real−time Load − MPC

• Real-world plug-in times
and charge lengths
• 15 clusters (1-5 hours
charge + 1-3 hours laxity)
• PHEV demand = 10% of
peak load
• DA= Day Ahead
• PJM market prices DA
10/22/2013 • Real time
prices = adjustments cost
20% more than DA
• DA = LP + SAA with
50 random scenarios +
tank model
• RT = ILP + Certainty
equivalence + clustering
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Population modeling with proposed quantizion scheme

Quantized Deferrable EV model
Load following dispatch very closely when using our model
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Base load with no PHEVs
Total uncontrolled load profile
Optimized DA bid using our
clustering method
Real−time load − MPC 

• Same setting
• DA = LP + Sample Average ≈ E{aq(t)} (50 random scenarios) + clustering
• Real Time Control = ILP + Certainty equivalence + clustering
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Part II

Pricing Incentive Design
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DR #1: Dynamic Pricing
Dynamic retail prices x(t) = [πr(t), . . . , πr(t + T )] ∈ Z(t) (set of
regulated prices)
Possible load shapes:

LDR(t) =
{

L(t)|L(t) = f (t;x(t)),x(t) ∈ Z(t)
}

(7)
Here f (.) is the price-response of the population

f (t;x(t)) =LI (t) +
V∑

v=1

∑
ϑ∈T v

{
av

ϑ(x(t))︸ ︷︷ ︸
unobservable

quantized price response - known︷ ︸︸ ︷
argmin

L(t)∈Lv
ϑ

(t)

T∑
t=1

πr(t)L(t)
}

Price response only observable in aggregate and not for different
clusters → learning av

ϑ(x(t)) from limited observations
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DR #2: Pricing for Direct Load Scheduling (DLS)
An aggregator hires appliances and directly schedules their load
Set of differentiated prices based on plasticity

xv(t) = {xv
ϑ(t),∀ϑ ∈ T v}

But how can we have voluntary participation in DLS?

Differentiated discounts xv(t) from a high flat rate → incentives
Appliances choose to participate based on incentives → av

ϑ(xv(t))

LDR(t) = LI (t; xv) +
V∑

v=1

∑
ϑ∈T v

av
ϑ(xv(t))Lv

ϑ(t). (8)

Reliable: aggregator observes av
ϑ(xv(t)) after posting incentives

and before control - no uncertainty in control
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Dynamically Designed Cluster-specific Incentives
Characteristics in ϑ have 2 types: intrinsic and customer chosen
We cluster appliances based on intrinstic characterics, e.g. gq(t)
Customer picks operation mode m, e.g., laxity χ

We design a set of incentives xv,q
m (t),m = 1, . . . ,M v,q for each cluster

[Alizadeh, Xiao, Scaglione, Van Der Schaar 2013], see also [Bitar, Xu 2013],
[Kefayati, Baldick, 2011]
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Incentive design

Category v and cluster q → intrinsic properties of loads
Aggregator posts incentives for each mode of loads in cluster q
and category v
Optimal posted prices? The closest approximation is the
“optimal unit demand pricing”
Customers valuation for different modes correlated (value of EV
charge with 1 hr laxity vs. value of EV charge with 2 hrs laxity)
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The Incentive Design Problem
Independent incentive design problem for different categories v
and clusters q → Let’s drop q, v for brevity
Aggregator designs

x(t) = [x1(t), x2(t), . . . , xM (t)]T , (9)

From recruitment of flexible appliances, the aggregator saves
money in the wholesale market (utility):

u(t) = [U1(t), . . . ,UM (t)]T (10)

Aggregator payoff when interacting with a specific cluster
population:

Y (x(t); t) =
∑

m∈M

Payoff of mode m︷ ︸︸ ︷
(Um(t)− xm(t))

∑
i∈P(t)

indicator of mode m selection︷ ︸︸ ︷
ai,m(x(t); t) . (11)

ai,m(x(t); t) = 1 if load i picks mode m given incentives x(t)
Goal: maximize payoff Y (x(t); t)
Problem: we don’t know how customers pick modes
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Probabilistic Model for Incentive Design Problem
At best we have statistics → Maximize expected payoff
Probability of load i picking mode m:

Pi,m(x(t); t) = E{ai,m(x(t); t)}. (12)

Incentives posted publically - Individual customers not important
Define the mode selection average probability across population:

Pm(x(t); t) =
∑

i∈P(t) Pi,m(x(t); t)
|P(t)| (13)

p(x(t); t) = [P0(x(t); t), . . . ,PM (x(t); t)]T → what we need
(14)

Maximize expected payoff across cluster population

max
x(t)�0

E

 ∑
m∈M

(Um(t)− xm(t))
∑

i∈P(t)

ai,m(x(t); t)

 =

max
x(t)�0

known︷ ︸︸ ︷
(u(t)− x(t))T

unknown︷ ︸︸ ︷
p(x(t); t) (15)
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Modeling the customer’s decision
Approaches to model p(x(t); t)? (average probability that the
aggregator posts x(t) and a customer picks each mode m)

1 Bayesian model-based method: rational customer - max(Vi(t))
Risk-averseness captured by types

customer utility Vi(t) =
∑
v,q

xv,q
m (t)− Rq,v

i,m(t)

Rq,v
i,m(t) = γv,q

i rv,q
m (t), γi random variable drawn from one PDF

2 Model-free learning method: customers may only be boundedly
rational. We need to learn their response to prices
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How do we recruit? Residential charging...

Aggregator schedules 620 uninterruptible PHEV charging events
Prices from New England ISO DA market - Maine load zone on
Sept 1st 2013
How many do we recruit (out of 620) and with what flexibility?
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More savings in the evening...
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Welfare Effects in Retail Market
Welfare generate via Direct Load Scheduling (DLS) vs. idealized
Dynamic Pricing (marginal price passed directly to customer - no
aggregator)
Savings summed up across the 620 events (shown as a function of
time of plug-in)
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Conclusion
We have discussed an information, decision, control and market
models for responsive loads
We left out how to sell renewables power as a result of this See
work on Risk Limiting Dispatch (RLD) [Varaiya, Wu, Bialek,2011],[He,
Murugesan, Zhang 2011], [Rajagopal, Bitar, Varaiya, Wu, 2013],...
How much risk can one hedge in generation with load
flexibility?...many questions left
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