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Premise

Balancing the Grid



How can generators know how much to produce?
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@ Retail electricity market — public utility, serves/tracks demand
o Customers do not see and do not respond to the real prices
@ Wholesale electricity market ~ perfect competition for generators
o A centralized optimization (run by an Independent System
Operator) provides prices
o Multiple settlements: Day Ahead (DA) — Hour Ahead (HA) —
Real Time (RT) — Regulation ... to manage load uncertainty
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Why are we not using more green electricity?

We are scheduling for Net consumption = Load - Renewable power
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Distributed generation

o Advantage: inelastic net consumption is back compatible with
current electricity market
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Why are we not using more green electricity?

We are scheduling for Net consumption = Load - Renewable power
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Distributed generation

o Advantage: inelastic net consumption is back compatible with
current electricity market

o Problem: unsustainable. Large generator ramps + reserves for
dealing with uncertainty blow up costs and pollution
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Electric Consumption Flexibility

o Demand is random but not truly inflexible, but today there is no
standard appliance interface to modulate it

o Demand Response (DR) programs tap into the flexibility of
end-use demand for multiple purposes

o But how much intrinsic flexibility does the aggergate demand
of a large appliance population have?

Definition: Plasticity

The potential shapes that the load of an appliance or a popoulation of
appliances can take
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The Smart Grid vision
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@ Most of the work is on the home price response side
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The Smart Grid System Challenge
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Demand Response: The Aggregator Problem
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Heterogenous population (...it is "The Internet of Things")
o Challenge 1: Modeling the flexibility ex-ante in the market
o Challenge 2: Real time control of the appliances

o Challenge 3: Economics: Convincing the customers to participate
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PART I - Modeling Electric Load Flexibility ("Plasticity")

The plasticity of a canonical battery

Population models for a very large number of canonical batteries

Generalizing results to real appliances

e 6 o

Planning and control
PART II - Retail Markets with Plasticity

o Designing retail prices and incentives
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Part 1
Load Flexibility Models



Various research camps

o Tank model: Fill the flexible demand tank by the end of the day
[Lambert, Gilman, Lilienthal,’06], [Lamadrid, Mount, Zimmerman,
Murillo-Sanchez, ’11],[Papavasiliou, Oren ’10]
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Various research camps

o Tank model: Fill the flexible demand tank by the end of the day
[Lambert, Gilman, Lilienthal,’06], [Lamadrid, Mount, Zimmerman,
Murillo-Sanchez, ’11],[Papavasiliou, Oren ’10]

o For the market, to set prices

o Detailed model: Model each individual appliance constraints
[Joo,Ilic,’10], [Huang, Walrand, Ramchandran,’11], [Foster,Caramanis,’13]

e For local controllers that respond to dynamic prices

o Quantized Population Models: Cluster appliances and derive an
aggregate model [Chong85],[Mathieu,Koch, Callaway,’13],[Alizadeh,
Scaglione, Thomas,’12]...

o Good for both! What we discuss next....
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Example of Load Plasticity: Ideal Battery

One ideal battery indexed by
o Arrives at t; and remains on indefinitely
o No rate constraint
o Initial charge of S;
o Capacity E;

The plasticity of battery i is defined as
£i(t) = {Li(t)|Li(t) = dXi(t)/dt,Xi(ti) = Si,O S Xi(t) S Ei,t Z ti}.
In English:
Load (power) = rate of change in state of charge z(t) (energy)
o Set L;(t) characterized by appliance category v (ideal battery)
and 3 continuous parameters:

0, =(t;, S, E;)

But how can we capture the plasticity of thousands of these batteries?J
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Aggregate Plasticity

We define the following operations on plasticities £4(t), L£a(t):

L(t) + Lo(t) = {L(t)L(t) = Ly(t) + La(t), (L1 (1), L2(1)) € La(t) x Cz(t)}

ni(t) = {L<t>|L<t> =5 L), (L0 La(t) € mt)},

k=1

where n € N and 0£4(¢) = {0}.
o Then, the plasticity of a population P? of ideal batteries is

£ =3 £ 1)

iepv
Plasticity of population = sum of individual plasticities

What if we have a very large population? )
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Quantizing Plasticity

o Natural step — quantize the paramaters: ; = (;, S;, E;)
0 — 9 € Finite set T

o Quantize state and time uniformly with step 6¢ =1 and 0z =1

o Discrete version (after sampling + quantization) of plasticity:
Li(t) = {Li(t)|Li(t) = 0z (1), m:(t;) = Si, 25(t) € {0, 1,..., By}, t > i}

o Plasticity of all batteries with discrete parameters ¥ = L3(t)
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Lowering the Complexity of £(t)?

o Let a%(t) & number of batteries with discrete parameters 9

o) = Y ap0Lst), D ap() =P (2)

DeT? 9ET?

o v=1,..., V different categories of appliances
\%
Lt)=L(t)+> £v(t), L'(t)={L'(t)} inelastic load  (3)
v=1

o Still redundant for aggregate load modeling

o The set >4 agLy(t) can be combined for some 9 and
represented by fewer variables
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Bundling Appliances with Similar Constraints

Population P}, with homogenous E but different (¢;, S;)

(]

Define arrival process for battery

a;(t) = u(t — t;) — indicator that battery ¢ is plugged in

We prefer not to keep track of individual appliances

o Random state arrival process on aggregate

25 s —x)ai(t), z=1,....F

1EPE

Aggregate state occupancy

Zéx, z)a(t), z=1,...,F

1€P,
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Aggregate load plasticity

The relationship between load and occupancy is:

Z l(Z Oma (t ) (z+ 1)aq(t )1 .

=0 T/'=z

o Can we say more when the change in state is the result of a
control action?
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Effect of Control Actions

Activation process from state 1’ to = :
dy..(t) = # batteries that go from state z to state z’ up to time ¢

Naturally, 0d, . (t) < ng(t).
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Controlled Aggregate Load Plasticity

The relationship between occupancy, control and load are:
E
na(t+1) = ag(t+ 1)+ > [do 2(t) — door ()]
/=0
E E
L(t) =YY (2 — 2)0dyar (1)
=0 2/=0

Notice the linear and simple nature of L(¢) in terms of dy . (t)
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Bundling Batteries with Non-homogeneous Capacity

o Results up to now are valid for batteries with homogenous
capacity F
o The capacity changes the underlying structure of plasticity

o We divide appliances into clusters ¢ =1,..., Q" based on the
quantized value of E;

E=2 E=3
N\ ‘//'/
TP AR
ap a; as(t) | ‘\au(f) a1 (t) as(t) as(t)
\ /
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Quantized Linear Load Model

Load plasticity of heterogenous ideal battery population

Q E? E°
L(t) = {L(t>|L(t) =D > > (@ —2)adl (1)

q—lx—Oz“{

adl ,(t) € Z*, Za <nq()}

a’=1l

) = ad(t Z SE=1) = d (¢ = 1)]

Linear, and scalable at large-scale by removing integrality constraints

Aggregate model= Tank Model [Lambert, Gilman, Lilienthal,’06]
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More constrained models for load plasticity

o The canonical battery can go from any state to any state and has
no deadline or other constraints.
o What about real appliances? Some are simple extensions
o Rate-constrained battery chage, e.g., V2G
do 3(t)

doo(t) dy 5(t

alt)  a(t)  at)  as(t)

o Interruptible consumption at a constant rate, e.g., pool pump,
EV 1.1kW charge
do 3(t)

ao(t) a1 (t) as(t) as(t)
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@ You can add deadlines using the same principle: cluster
appliances with the same deadline x?

@ Then, you simply express the constraint inside the plasticity set

Q' EY E¢
z:vm{ zzzmz e

g=1z=02'=

ada?,a:’( ) € Z+avx7$ S {0, ,...7Eq}

> 0dl (1) < nd(t),Ve < B na(x?) = o} (4)

/=1
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Non-interruptible Appliances - Individual Plasticity

Loads that can be shifted within a time frame but cannot be
modified after activation, e.g., washer/dryers

z;(t) € {0,1} = state of appliance ¢ (wainting/activated)

Impluse response of appliance 7 if activated at time 0 = g;()

Laxity (slack time) of x;

Li(t) ={Li(1)|Li(t) = (1) * Ozi(t), z:(t) € {0, 1}, (5)
zi(t) = ai(t = xa), wi(t = 1) <@i(t) < ai()}-

Load = change in state convolved with the load shape g¢;(¢)

(1) ‘ I _]_ng(t) L_Z(E) = ¢;(t) * 0x;(t)
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Non-interruptible Appliances - Aggregate Plasticity

o We assign appliances to cluster ¢ based on quantized pulses ¢(t)
o a?(t) = total number of arrivals in cluster ¢ up to time ¢

e d9(t) = total number of activations from cluster ¢ up to time ¢

a(t) g~ d'(t) ad(t) x g1 (t)
E— |~

a?(t) 5~ () [T] Ad2(t)  g2(t) L(t)
O—P L

a’(t) e d*(t) [ ad3t) x g3(t)
CO—pP L

o
Lo(t) :{ Z g1(t) x8d(t), d(t) € Z* (6)

aU(t) = a(t = x7), dU(t—1) < d(1) < a"(1) |
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o Dimmable Lighting, like Hybrid system, but you control g;(t)
instead of the switch state

e Thermostatically Controlled Loads (T'CL) require a bit more
effort but one can follow the same constructs

@ ....you can soon get a pretty complete family of models

o If it can shift demand, the Aggregator can hedge the electricity
market settlements.

o The Aggregator needs to control the appliances. How?
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How can the Aggregator harness plasticity?

Two options to harness the population plasticity £(¢)

@ Dynamic Pricing: The Aggregator sends a price signal, the
customers respond with a local Home/Building Energy
Management System

o Direct Load Scheduling: The Aggregator provides different
pricing incentives, to control directly electric loads

o In both cases, due to limited degrees of control on heterogenous
demand:

LPR(t) € L()

o The price signal or incentive affects the arrival processes a(t)
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Steps for the Aggregator Direct Load Scheduling (DLS)

Pricing Incentive design:
@ Design incentives to recruit appliances - - will discuss in part 1T
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Steps for the Aggregator Direct Load Scheduling (DLS)

Pricing Incentive design:

@ Design incentives to recruit appliances - will discuss in part II
Planning:

o Forecast arrivals in clusters for different categories

o Make optimal market decisions based on forecasted plasticity

od' () x g' (t)

(>] (2] [>]
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Steps for the Aggregator Direct Load Scheduling (DLS)

Pricing Incentive design:

o Design incentives to recruit appliances - will discuss in part IT
Planning:

o Forecast arrivals in clusters for different categories

o Make optimal market decisions based on forecasted plasticity
Real-time:

@ Observe arrivals in clusters

o Decide appliance schedules d4(t) to optimize load

a(t) @)@ P e LU0

a*(t) @Olm 0d2(t) + g2(t) N L()
@O0 =L &

(t) (PO 0dt) % g (1)
@O0 =L
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Real-time: How do we activating appliances?

Arrival and Activation Processes

aq(t) and dy(t) — total recruited appliances and activations before
time ¢ in the ¢-th queue

o Easy communications: Broadcast time stamp Tg¢:
aq(t — Tact) = dy(2)

d,(t
Distanceis a q()

T function of laxity

Arrival process

a,(t)

o Appliance whose arrival is prior than T, initiate to draw power
based on the broadcast control message
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Population modeling with the Tank Model

o Population of 40000 PHEVs + 1.1 kW non-interruptible charging

o Tank model = PHEVs effectively modeled as canonical batteries

-3
S

DA marginal price ($/MWh)

0 5 10 15 20 2 3 ES
Time (hours)

—Uncontrolled load profile
110|Optimized DA bid using tank model )
- Real-time Load - MPC i

Load (MW)

e Real-world plug-in times
and charge lengths

e 15 clusters (1-5 hours
charge + 1-3 hours laxity)
e PHEV demand = 10% of
peak load

e DA= Day Ahead

e PJM market prices DA
10/22/2013 e Real time
prices = adjustments cost
20% more than DA

e DA = LP + SAA with
50 random scenarios +
tank model

e RT = ILP + Certainty
equivalence + clustering

38 /51



Population modeling with proposed quantizion scheme

o Quantized Deferrable EV model

o Load following dispatch very closely when using our model

110

-—Base load with no PHEVs
—Total uncontrolled load profile|
100/ Optimized DA bid using our
clustering method

. 90|---Real-time load - MPC

2
=
< s8o-
8
— 70
60-
% 5 10 15 20 25 30 3
Time (hours)
e Same setting
e DA = LP + Sample Average ~ E{a?(t)} (50 random scenarios) + clustering
e Real Time Control = ILP + Certainty equivalence + clustering
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Part 11
Pricing Incentive Design

40/51



DR #1: Dynamic Pricing

o Dynamic retail prices x(t) = [7"(t),...,7"(t + T)] € Z(¢) (set of
regulated prices)
@ Possible load shapes:

LPE(1) = {L(t) = f(t;x(t)),x(t) € Z(t)} (7)
o Here f(.) is the price-response of the population

quantized price response - known

1%
ft;x(t) =L (t) + { ag(x(t)) argmin " }
2,2 | @) argmi m?}
unobservable

o Price response only observable in aggregate and not for different
clusters — learning aj(x(¢)) from limited observations
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DR #2: Pricing for Direct Load Scheduling (DLS)

@ An aggregator hires appliances and directly schedules their load
o Set of differentiated prices based on plasticity

z'(t) = {zj(t),V9 € T}

But how can we have voluntary participation in DLS? J

o Differentiated discounts z"(¢) from a high flat rate — incentives
o Appliances choose to participate based on incentives — a$(z"(¢))

1%
LOR@) = LG+ D el (D))L5(1). (8)

v=19€T"

o Reliable: aggregator observes aj(x"(t)) after posting incentives
and before control - no uncertainty in control
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Dynamically Designed Cluster-specific Incentives

o Characteristics in ¢ have 2 types: intrinsic and customer chosen
o We cluster appliances based on intrinstic characterics, e.g. ¢4(t)
o Customer picks operation mode m, e.g., laxity x

We design a set of incentives z2%(t),m = 1,..., M"? for each cluster

Aggregator
DLS incentive menu for 1.1IKW battery charge requests
Incentive Charge| 1hr |2hrs |3hrs |4hrs
Design and Length
Recruitment Laxity

Unit 1hr $0.05 [$0.13 | $0.19 |$0.19

2hrs $6.09 $0.22 | $0.25

ke \\: $0.11 |$0.19 | $0.25 | $0.3

Recruitment,
Notice

Direct
Scheduling
Unit

[Alizadeh, Xiao, Scaglione, Van Der Schaar 2013], see also [Bitar, Xu 2013],
[Kefayati, Baldick, 2011]
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Incentive design

o Category v and cluster ¢ — intrinsic properties of loads

o Aggregator posts incentives for each mode of loads in cluster ¢
and category v

o Optimal posted prices? The closest approximation is the
“optimal unit demand pricing”

o Customers valuation for different modes correlated (value of EV
charge with 1 hr laxity vs. value of EV charge with 2 hrs laxity)

p1 2 p3 X4 X3 X3

P
A ® A

VJ Vo /
Vi 3 Vi V3
independent @ Correlated

44 /51



The Incentive Design Problem

o Independent incentive design problem for different categories v
and clusters ¢ — Let’s drop ¢, v for brevity
o Aggregator designs

x(t) = [21(1), 22(8), ..., ama ()], 9)

o From recruitment of flexible appliances, the aggregator saves
money in the wholesale market (utility):

u(t) = [Ui(t), ..., Un(t)]" (10)
o Aggregator payoff when interacting with a specific cluster
population:
Payoff of mode M indicator of mode m selection
Y(x(0);t) = Y (Un(t) —am() Y aim(x(t);t) . (11)
meM 1€P(1)

a;m(x(t);t) = 1 if load ¢ picks mode m given incentives x(¢)
o Goal: maximize payoft Y (x(¢);?)
@ Problem: we don’t know how customers pick modes
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Probabilistic Model for Incentive Design Problem

o At best we have statistics — Maximize expected payoff
o Probability of load 7 picking mode m:

Pim(x(1); 1) = E{asm(x(1); )} (12)

o Incentives posted publically - Individual customers not important
o Define the mode selection average probability across population:

2iep(ry Pim(x(1); 1)

P, (x(t);t) = 13
(x(0): ) o1 (13)
p(x(t); t) = [Po(x(t); t), ..., Pu(x(); )] T — what we need
(14)
o Maximize expected payoff across cluster population
max B " (Un(t) = am(t) D asm(x(t);t) p =
x(t)z0 meM i€P(t)
known unknown
—
max (u(t) —x(t)) " p(x(t); 1) (15)

x(t)>=0



Modeling the customer’s decision

Approaches to model p(x(t);¢)? (average probability that the
aggregator posts x(t¢) and a customer picks each mode m)

7

@ Bayesian model-based method: rational customer - max( V;(t))
Risk-averseness captured by types

customer utility V;( Zx (t) — R (1)

R (1) =47 %r4(t), v random variable drawn from one PDF
@ Model-free learning method: customers may only be boundedly
rational. We need to learn their response to prices
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How do we recruit? Residential charging...

o Aggregator schedules 620 uninterruptible PHEV charging events

o Prices from New England ISO DA market - Maine load zone on
Sept 1st 2013

o How many do we recruit (out of 620) and with what flexibility?

80

Il Not recruited
1 hour laxity
|| M2 hours laxity
I3 hours laxity
4 hours laxity
5 hours laxity
6 hours laxity
7 hours laxity
8 hours laxity
(| @9 hours laxity
Il 10 hours laxity

Number of PHEVs
IS o
o o

N
o

Time (hour)

@ More savings in the evening...
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Welfare Effects in Retail Market

o Welfare generate via Direct Load Scheduling (DLS) vs. idealized
Dynamic Pricing (marginal price passed directly to customer - no
aggregator)

o Savings summed up across the 620 events (shown as a function of
time of plug-in)

__Total consumer population savings
through DLS participation
_.Total consumer savings through
a hypothetical optimal pricing scheme
---Consumer + Aggregator savings

1
3
T

w
T

N
[
T

Dollars per half hour
T—F

T

o
[
T

!

-
0 5 10 15 20 25
Time of day (in half hour intervals)
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Conclusion

o We have discussed an information, decision, control and market
models for responsive loads

o We left out how to sell renewables power as a result of this See
work on Risk Limiting Dispatch (RLD) [Varaiya, Wu, Bialek,2011],[He,
Murugesan, Zhang 2011], [Rajagopal, Bitar, Varaiya, Wu, 2013],...

o How much risk can one hedge in generation with load
flexibility?...many questions left

9
Incentives
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s Customers
N "
~ y 4 - ~y —
- 4 | [}
o Aggregator
[\ 50
- , Si)
USH -
Large Population Modal —
of Appliances i ode 0
PP D|rect. Predictive —
cheduling
Control

50 /51



Conclusion

o We have discussed an information, decision, control and market
models for responsive loads

o We left out how to sell renewables power as a result of this See
work on Risk Limiting Dispatch (RLD) [Varaiya, Wu, Bialek,2011],[He,
Murugesan, Zhang 2011], [Rajagopal, Bitar, Varaiya, Wu, 2013],...

o How much risk can one hedge in generation with load
flexibility?...many questions left
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