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Abstract—The surge of affordable, small unmanned aerial
vehicles (UAVs) opens up many new possibilities for applications,
which often rely on locating relevant objects within a scene.
Besides accurate object detection, inference time is a key factor
for real-world applications, as fast models can be deployed
directly on mobile platforms, such as UAVs. However, current
state-of-the-art detectors are typically not suited for this type of
deployment. In this work, we propose a fast and lightweight on-
board detector for the task of person detection in UAV imagery.
We perform several adaptations to speed up the SSD detector,
which comprises our base detection framework. Adjustments
of the network include lightweight backbone architecture, filter
pruning, and tuning of implementation details. A thorough
evaluation of all factors is carried out on two mobile platforms.
Our proposed detector is about 24 times faster on Jetson AGX
platform compared to the baseline, while the detection accuracy
is only slightly impacted. Furthermore, we demonstrate the
robustness of our proposed detector on unseen scenarios in a
cross domain setting.

Index Terms—person detection, lightweight CNN, UAV im-
agery

I. INTRODUCTION

In recent years, the surge of affordable, small unmanned
aerial vehicles (UAVs) opened up many new possibilities
for applications, such as disaster control, rescue missions,
and security. In many of these cases, a degree of on-board
image analysis is required to provide low-latency information
for autonomous functions or to better utilize low-bandwidth
transmission. Often the most important on-board task is object
detection, as several more complex analysis tasks or decision
functions are based on the locations of relevant objects in
the scene. Examples for this are the transmission of image
regions with observed objects in low-bandwidth situations
or autonomous functions, such as following, counting, or
zooming in on objects.

In this work, we propose a fast person detection approach
suitable for deployment and online processing on-board a
UAV. Our approach focuses on persons, as this is the most rele-
vant object category in most applications, but can be extended
towards additional object classes with little adaptation. The
detector is based on convolutional neural networks (CNNs),
since landmark CNN models, such as Faster R-CNN [1],

Fig. 1. Example image of the VisDrone dataset [15] used for validating our
proposed detector. The image shows a complex scene with persons at varying
positions, view angles, and scales.

SSD [2], and YOLOv2 [3] achieve top accuracies on current
benchmark datasets. However, while these algorithms achieve
real-time inference speeds on server-grade GPUs, they are
unsuitable for real-time processing in mobile platforms, such
as UAVs, where computational resources are severely limited.
In our work, we focus on adapting the SSD detector to these
additional requirements of UAV on-board computation. The
convolutional backbone network of our detector is based on
the Pelee architecture [4], a network specifically designed for
fast inference of classification tasks. We further reduce the
number of parameters and computational costs by applying
the filter pruning strategy proposed in [5]. To analyze the
improvements in latency and throughput of several important
design decisions, as well as key implementation details, we
measure the inference speed of our model on the Jetson TX2
and AGX platforms. Our final detector is about 26 and 24
times faster on Jetson TX2 and Jetson AGX, respectively,
while the detection accuracy is only slightly worse compared
to the baseline approach. We further demonstrate the robust-
ness of our proposed detector on unseen scenarios from cross
domain datasets. Our contributions can be summarized as:

• We propose a new, fast person detector for on-board
processing on mobile platforms.



• We give a detailed analysis of model design choices with
regard to inference time across several UAV recordings
of scenes with high visual diversity.

• The impact of deployment environment and implemen-
tation details on the inference time is systematically
evaluated on two different mobile platforms.

II. RELATED WORK

Object detection has been a major focus of the computer
vision community for many years. Recently, several deep
learning detection frameworks have been developed, such as
Faster R-CNN [1], SSD [2], and YOLOv2 [3]. Most of these
approaches can be categorized as either one-stage (e.g. YOLO,
SSD) or two-stage approaches (e.g. Faster R-CNN). While
past research mainly focuses on improving the detection
accuracy (e.g. by exploiting feature pyramids), lightweight
and computational efficient networks for the use on mobile
platforms experience growing interest. In the following, we
restrict our literature review on work focusing on improving
inference time.

Deep learning detection frameworks typically employ large
CNNs as feature extractor, followed by layers for regres-
sion of bounding boxes and classification of object classes.
Hence, most approaches for improving inference speed aim
at reducing the number of parameters and computational
operations in the feature extractor to speed up the detector. In
recent years, a multitude of novel computation-efficient CNN
networks, such as Mobilenet (V2) [11], [12], SqueezeNet [9],
ShuffleNet (V2) [13], [14], and PeleeNet [4], have been
proposed for classification tasks. Several subsequent works
demonstrate the potential of these lightweight architectures as
feature extractors for object detection.

Howard et al. [11] employ MobileNet as backbone archi-
tecture for SSD and achieve comparable detection accuracy on
MS COCO while the parameter and floating point operations
(FLOP) count is significantly reduced. MobileNet uses depth-
wise separable convolutions to greatly decrease the number
of parameters and operations, while trading a fair amount
of accuracy compared to VGG16. ShuffleNet [13] exploits
pointwise group convolution and channel shuffle for cross-
group information flow to realize a 13× more efficient but
equally accurate model compared to AlexNet. While separable
convolutions require significantly fewer parameters, they are
not supported as well as regular convolutions in deep learning
frameworks and hardware. The ShuffleNet architecture is
applied in [10] for fast vehicle detection in aerial imagery.
SqueezeNet [9] is comprised of multiple fire modules, which
include a bottleneck realized by pointwise convolutions as
well. This enables drastically smaller model sizes while main-
taining an AlexNet-level image classification accuracy. Wu et
al. [20] achieve state-of-the-art accuracy on the KITTI dataset
by employing SqueezeNet as feature extractor. PeleeNet [4],
which we employ as feature extractor in this work as well,
was shown to outperform MobileNet-SSD on PASCAL VOC
and MS COCO.

TABLE I
NETWORK STRUCTURE OF PELEENET AND OUTPUT DIMENSION OF EACH
STAGE FOR AN INPUT RESOLUTION OF 1280×704 PIXELS. THE OUTPUT

OF THE LAST LAYERS OF THE HIGHLIGHTED STAGES ARE USED AS
FEATURE MAPS, i.e. stage2 tb/relu, stage3 tb/relu AND stage4 tb/relu.

Network Stage Output Dimension

Stage0 – Stem Block 320×176×64
Stage1 – 3× Two-Way Dense Layer 320×176×128
Stage2 – 4× Two-Way Dense Layer 160×88 ×256
Stage3 – 8× Two-Way Dense Layer 80×44 ×512
Stage4 – 6× Two-Way Dense Layer 40×22 ×704

III. METHOD

In this section, we describe the proposed detection algo-
rithm applied for fast person detection. First, we introduce
the utilized deep learning based detection framework and
our main adaptations performed to optimize inference time.
Furthermore, optimizations of the runtime environment of the
proposed detection algorithm are discussed.

A. Detector

We adopt the Single Shot Detector (SSD) as base detection
framework because of its good trade-off between detection
accuracy and inference time. SSD is a fully convolutional
network, which exploits a CNN base network for feature
extraction. Multiple convolutional layers are employed as
feature maps to predict detections at multiple scales. For this,
default boxes centered at each feature map position are used
as reference for bounding box regression.

To speed up the detector, we replace the standard base
network with PeleeNet. Unlike recent lightweight architectures
such as MobileNet and ShuffleNet, PeleeNet only consists
of standard components, which allows for straightforward
deployment. PeleeNet, which is inspired by DenseNet, mainly
comprises two building blocks (see Table I). An initial building
block termed Stem block enhances the feature expression
ability in a computational efficient manner. Then, a sequence
of so called Two-Way Dense Layers is used for feature extrac-
tion. Various kernel sizes are employed in order to achieve
different scales of receptive fields, whereby 1×1 bottleneck
convolutions are applied to reduce the number of subsequent
3×3 convolutions. Hence, the number of parameters and com-
putational operations in PeleeNet are much reduced compared
to most other CNN architectures.

As base networks are pre-trained for classification on bench-
mark datasets comprising a large number of classes, these
networks are often oversized for detection tasks with only
a few classes. To remove filters with redundant information,
which are dispensable for our task, we apply the one-shot
pruning strategy proposed by Li et al. [5]. The applied one-
shot pruning initially computes the `1-norm for every filter
fi within a convolutional layer as

∑ni

j=0|fij | where fij is the
jth weight of filter fi. For every convolutional layer, filters are
sorted according to the `1-norm, which proved to be a good
heuristic to judge the usefulness of a particular filter. Then, a
fixed percentage of filters with the lowest `1-norm is removed



from the network. Finally, the condensed network is re-trained
any knowledge lost during the pruning process.

SSD generally exploits shallow layers with high spatial
resolution to detect small objects, while deeper layers are used
for nearly image-filling objects. While this procedure results in
improved performance on common benchmark datasets, it is
not practical for many real-world applications, such as person
detection in UAV imagery. To account for the characteristics
of UAV imagery acquired at altitudes in the range of 10m to
50m, we restrict the person prediction to shallow layers. Thus,
only stage2 tb/relu, stage3 tb/relu and stage4 tb/relu are used
as feature maps. Removing all deeper layers further reduces
the computational costs.

To further account for the characteristics of UAV imagery,
we adapt the default box settings. As the detection accuracy
depends on the default box sizes used for bounding box
regression, we adapt the default box sizes to the typical range
of person sizes in the training data.

B. Runtime environment

For deployment of our detector, we compare the two mobile-
suitable platforms NVIDIA Jetson TX2 and Jetson AGX.
Several optimization strategies to optimize inference of deep
learning applications on these platforms are available. Both
Jetson TX2 and Jetson AGX can run with different power
modes, e.g. by enabling the maximum CPU and GPU fre-
quency. However, this option strongly depends on the respec-
tive application. The TensorRT fast inference library enables
optimized inference for different deep learning frameworks,
such as Caffe. By using TensorRT during deployment, instead
of the original deep learning framework, the inference time can
be notably reduced. In addition, TensorRT offers out-of-the-
box INT8 quantization and FP16 precision implementations of
common layers for deployment, which can further speed up
the inference. Moreover, TensorRT includes extensive profiling
tools, which allow profiling each layer with minimal overhead.
The profiling results reveal that the SoftMax implementation
was noticeably slower compared to the rest of the network.
We thus replaced the layer with a simple implementation of
the SoftMax function as a CUDA kernel and thereby improved
the network’s execution time.

IV. EXPERIMENTAL ANALYSIS

A. Implementation Details

For training all networks, we employ the original Caffe
SSD implementation [19]. Each network is trained for 30,000
iterations with an initial learning rate of 0.01 using Stochastic
Gradient Descent (SGD). The learning rate is decreased by
a factor of 10 after 10k, 15k, 20k, and 25k iterations. The
accumulated batch size is set to 32. For our pruned network,
we remove 50% of the filters for each convolution of the
Two-Way Dense Blocks as described in Section III-A. The
pruned network is then retrained with the same settings. For
all experiments, we employ three feature maps and the default
box settings as described in Section III-A.

To train networks robust to a large variety of scenarios,
we use subsets of four publicly available datasets as training
data. The VisDrone [15] dataset contains 263 video sequences
recorded by a UAV. The dataset possesses a large diversity
of different scenes ranging from urban to suburban areas
in 14 different cities across China. For our training, only
video sequences with annotations of pedestrians or persons
are considered. The Mini-drone video dataset [17] comprises
38 video sequences captured in full HD resolution with a
Phantom 2 Vision+. The dataset entails different surveillance
scenarios of a parking lot. Video sequences containing at least
one person are added to our training data, whereby video
sequences with missing annotations of persons are filtered out.
MOT2017 [18] is comprised of seven videos with annotated
persons showing different scenarios, such as pedestrian street
at night, people walking around a large square or busy
shopping mall. CityPersons [16] is a subset of CityScapes,
which contains images recorded by a camera mounted on a
driving car. The images are acquired in different cities across
Germany and Zurich, Switzerland. All images are down scaled
to 1280×704 pixels. Thus, we force the trained networks to
learn to predict even small persons. Images containing large
persons whose height clearly exceed the height of persons in
videos acquired by UAVs at an altitude of about 10m or more
are removed. In case of VisDrone, images with a width above
1400 pixels are cropped into tiles of 1280×704 pixels.

B. Evaluation

We select two video sequences from the VisDrone validation
set to quantitatively evaluate the performed experiments. The
selected video sequences comprise camera perspectives and
flying altitudes suited for the task of person detection by a
UAV. Examples of both scenes are shown in Figure 2. To
measure the detection accuracy, we use average precision (AP)
as evaluation metric. For this, detections with an Intersection
over union (IoU) overlap with a ground truth box above 0.5 are
considered as true positives. We use the original image sizes of
1344×756 pixels and 2688×1512 pixels, respectively, as input
for measuring the detection accuracy. Inference time is re-
ported in frames per second (FPS) averaged over 1000 forward
passes. As the inference time clearly differs for the different
image resolutions, we used an input image size of 1280×704
pixels. The inference time is measured on two different mobile
platforms: NVIDIA Jetson TX2 and NVIDIA Jetson AGX.
Note that TensorRT version 5.0 and MAX-N power preset
was used for all experiments if not stated otherwise. Due to
preliminary experiments, we set the IoU-threshold of the non-
maximum suppression step for all experiments to 0.5. Hence,
the number of missed detections due to occlusions by nearby
persons is reduced.

First, we analyze the impact of the utilized base network.
As baseline, we employ VGG16 as base network, which is
used by default. For this, conv4 3, conv6, and fc7 are used
as feature maps, which offer the same feature map resolution
as the convolutional layers used in case of PeleeNet. Layers
succeeding fc7 are removed from the base network. The AP



Fig. 2. Example images of the VisDrone dataset used for evaluation. Qualitative detections (green) indicate the good detection accuracy.

Fig. 3. Qualitative examples on MultiDrone dataset [21] (left) and self-recorded images (right) demonstrate the good detection accuracy across domains.

and inference times are reported in Table II. Though the
detection accurcay is good, the inference time is poor on both
platforms.

Replacing VGG16 by PeleeNet results in a speed up by
a factor of almost 10, while the detection accuracy only
drops by 2.5% in AP. Reason for this is the lightweight
architecture of PeleeNet, which requires considerably fewer
computational operations. Further experiments showed that
including stage4 tb/relu only has a minor impact on the
detection accuracy. We therefore omit this feature map and
remove all layers after stage3 tb/relu, which further reduces
the number of parameters and computational operations. This
leads to an improved inference speed by about 10% with
no significant drop in detection accuracy. Finally, we remove
redundant filters by applying the pruning scheme introduced
in SectionIII-A. Eliminating 50% of filters within the Two
Way Dense Blocks slightly increase the number of FPS while
the detection accurcay remains unchanged. Further strategies
to optimize the detection accuracy showed no significant
impact. Upsampling features of deep layers by applying de-
convolutional layers as described in [6] shows only minor
impact on the AP, but the inference time gets clearly worse.
Employing focal loss [7] does not considerably affect the
detection accuracy either.

Next, we analyze the impact of purely implementation
specific optimization techniques on the inference time (see

TABLE II
COMPARISON OF DIFFERENT BACKBONE NETWORK ARCHITECTURES ON

THE SELECTED VISDRONE SEQUENCES.

Architecture AP (%) Inference Speed (FPS)
Jetson TX2 Jetson AGX

VGG16 73.2 1.1 3.4
Pelee 70.7 9.8 30.3
Pelee short 70.2 10.9 33.0
Pelee shortα=0.5 70.2 13.2 35.4

TABLE III
IMPACT OF IMPLEMENTATION SPECIFIC CHANGES ON INFERENCE SPEED

AND DETECTION ACCURACY; *REPLACED TENSORRT SOFTMAX;
OC = OVERLOCKED (MAX-N); NO OC = MAX-P/15W
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3 3 70.2 13.2 16.1 35.4 52.9
3 3 3 70.2 15.9 19.8 36.4 58.3
3 3 3 70.2 19.4 28.9 40.4 81.6
3 3 3 63.2 15.2 19.8 45.0 99.0



Table III). Employing the Caffe framework for deployment
results in poor inference time. We only achieve 3.4 FPS and
6.5 FPS on Jetson TX2 and Jetson AGX, respectively. The
number of FPS slightly increases by setting the power mode
to MAX-N. As the regular Caffe framework is not optimized
for deployment, we use the TensorRT environment to execute
our deep learning based person detector. Due to the including
inference optimizer, the number of FPS is increased by a
factor of up to 6.8 on Jetson AGX. Note that the AP slightly
differs due to the different deployment environment and the
corresponding layer implementations. Utilizing TensorRT’s
extensive profiling tools indicates that the applied SoftMax
implementation is a bottleneck of the network. Compared to
other layers of the network, SoftMax is noticeably slower.
Hence, we replace the TensorRT implementation with a naive
CUDA implementation of the SoftMax function leading to
slightly improved inference time. The highest impact on the
inference time exhibits the use of FP16 precision implementa-
tions of common layers for deployment. The number of FPS is
increased by 22% and 11% on Jetson TX2 and Jetson AGX,
respectively or 46% and 40% when overclocked, while the
detection accuracy is not affected. Using INT8 quantization
results in an even larger speed up. However, the detection
accuracy drops by 7.0% in AP.

Qualitative detection results highlighted with green boxes
are depicted in Figure 2. Even small persons, partially oc-
cluded persons and persons on bicycles are mostly detected.
Nevertheless, there exist some missed detections, which ex-
hibit room for improvement, e.g. post-process detections by a
tracker.

Finally, we evaluate the cross domain applicability of our
proposed detector. For this purpose, we employ two different
datasets: the publicly available MultiDrone dataset [21] and
an own dataset. Both dataset contain images with persons
recorded by UAVs. Exemplarily detection results given in
Figure 1 demonstrate the good transferability of our detector
to unseen scenarios with different viewing perspectives and
resolutions.

V. CONCLUSION

We proposed a fast and lightweight detector for the task
of person detection in UAV imagery. For this purpose, we
adjusted the SSD detector used as base detection framework
with regard to inference time and detection accuracy. Replac-
ing the computational expensive base network by PeleeNet
– a lightweight CNN architecture – resulted in a speed up
of almost factor 10 on two mobile platforms. The inference
time was further improved by focusing only on relevant
feature maps and filter pruning to reduce redundant filters.
Besides the employed detector architecture, we also focused
on aspects of the deployment environment to optimize the
inference time. Setting the power mode to MAX-N, exploiting
TensorRT instead of the Caffe framework, modifying the
SoftMax layer, and using FP16 precision implementations of
common layers lead to a speed up of more than 100% while
retaining the detection accuracy. By employing four different

datasets for training, our proposed detector achieves robust
detections on unseen scenarios, as demonstrated qualitatively
on cross domain datasets. In future work, we will focus on
post processing the detection output by an online tracker to
reduce false positive and false negative detections.
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