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Abstract—In the past few years, autonomous vehicles have
attracted a lot of attention. Precise absolute localization is one of
the essential requirements for autonomous mobility. In order to
realize a high degree of autonomy, there are several challenges
to be addressed. In this contribution, we provide an overview of
existing GNSS positioning techniques. We start by establishing
the data models and follow that by reviewing the most prominent
techniques and their advantages and shortcomings. We proceed
by discussing the main challenges, recent developments, and
current trends.

Index Terms—Autonomous vehicles, GNSS, INS, Localization,
Multi-sensor fusion

I. INTRODUCTION

Autonomous vehicles combine a variety of sensors, such
as Global Navigation Satellite System (GNSS), radar, Li-
dar, sonar, odometry, camera, and Inertial Navigation System
(INS), to measure their location, velocity, and attitude, and
to perceive the environment around them. Multi-sensor fusion
is required to leverage all the available measurements [1]. A
functional diagram of an autonomous vehicle system is shown
in Fig. 1. Autonomous driving is an especially complex task
that interprets huge sensory information jointly to identify
appropriate navigation paths, obstacles, and relevant signage
[2]. The sensors utilized in current test vehicles have large size
and are expensive. To replace these sensors by mass market
productions and to provide equally good (or improved) quality
information to satisfy the requirement of full automation pose
a big challenge.
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Fig. 1. Autonomous System Diagram [3].

Among the processes required for autonomous driving,
navigation is a fundamental requirement and a principal com-
ponent is to estimate the vehicle’s absolute position, which

mainly relies on GNSS or GNSS/INS [4]. Although there are
millions of devices in the market with localization capabilities,
GNSS remains one of the dominating techniques for absolute
position estimation and is expected to play a key role in
autonomous vehicles, as well as other autonomous systems.
GNSS encompasses a group of satellite navigation systems
with global coverage, which allows the users to obtain their
geospatial position using signals transmitted from satellites.
Available GNSS constellations include GPS, GLONASS, Bei-
Dou, Galileo, and so on. All of these constellations broadcast
signals on multiple (dual or triple) frequencies. A comparison
of these constellations is shown in TABLE I.

The observations of GNSS receivers include pseudo-range
and carrier phase. The carrier phase measurements are ap-
proximately two orders of magnitude more precise than the
pseudo-range data, but they are ambiguous by unknown integer
numbers of cycles [5]. Resolving integer ambiguities is a key
and one prime difficulty for GNSS high-precision localization.
Standard GNSS localization provided by mass-market devices
uses only pseudo-range data, and its accuracy is 3-5 meters.

Precise GNSS positioning techniques are widely used to
achieve sub-meter localization accuracy by using both pseudo-
range and carrier phase and leveraging information provided
by reference stations [6], [7]. The most widely used pre-
cise positioning techniques include real-time kinematic (RTK)
and precise point positioning (PPP) [8]. To overcome the
limitations of pure GNSS systems, integrating GNSS data
with INS observations has led to another popular technique,
named GNSS/INS method. Currently, most vehicles feature
both GNSS and inertial sensors to achieve primary functions
such as route planning, driving assistance, and stability control.
The localization accuracy required for these functions cannot
satisfy the rigorous requirements for high-level autonomy
functionality including lane-keeping, lane-departure, etc. [9].

In this paper, we discuss the major techniques for precise
positioning that can be applied to autonomous ground vehicles.
We explain the main idea behind each technique, the man
challenges, and future trends. The rest of this contribution is
organized as follows. Section II presents a brief introduction to
GNSS-based precise positioning methods, namely RTK, PPP
and GNSS/INS. In Section III, we discuss the main challenges
of GNSS-based localization. A highlight to potential future
GNSS localization techniques is provided in Section IV.



TABLE I
GNSS COMPARISON

GPS GLONASS Galileo BeiDou
Altitude 20,180 km 19,130 km 23,222 km 21,150 km
Period 11 h 58 min 11 h 16 min 14 h 5 min 12 h 38 min

Satellites 31 24 26 23
34 planned 26 planned 30 planned 35 planned

Frequencies
1575.42 MHz (L1) 1602.00 MHz (L1) 1575.42 MHz (E1) 1561.098 MHz (B1)
1227.60 MHz (L2) 1246.00 MHz (L2) 1176.45/1207.14 MHz (E5a/b) 1207.14 MHz (B2)
1176.45 MHz (L5) 1202.025 MHz (L3) 1278.75 MHz (E6) 1268.52 MHz (B3)

II. GNSS-BASED LOCALIZATION TECHNIQUES

RTK, PPP, and GNSS/INS are the three major precise
positioning methods for GNSS users at present. An overview
of each approach is given in this section.

A. Real-time Kinematic Positioning

In RTK positioning, the fixed reference/base station trans-
mits its pseudo-range and carrier phase data to the vehicle via a
suitable communication link [10]. The simultaneous measure-
ments of both the base station and the rover are then linearly
combined to remove symmetrical errors and processed in real
time manner [11]. The relative location can be accurately
estimated using techniques that involve differential correction
and ambiguity resolution [11], [12]. Note that the position of
the base station should be precisely known. This method is
capable of delivering centimeter level position accuracy of a
vehicle, which can be less than 10 cm and up to 1 cm + 1
ppm under clear sky conditions.
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Fig. 2. RTK System Structure and Observation Model.

Considering only a single rover and a single base station as
shown in Fig. 2, the original observations for the n-th satellite
received at the vehicle can be formulated as

Pn
v = ρnv + Inv + Tn

v + c (δtv − δtn) + εnv , (1)

ϕn
v = ρnv + λNn

v − Inv + Tn
v + c (δtv − δtn) + ςnv , (2)

with
ρnv = ‖Rn − rv‖2 (3)

where P is the pseudo-range measurement, ϕ is the carrier
phase observable, ρ represents the receiver-satellite geometri-
cal range, N is the unknown integer carrier phase ambiguity,
λ is the wavelength, I is the ionospheric delay, T is the

tropospheric delay, δt represents the clock bias of the receivers
or satellite, R is the known satellite location, r is the vehicle
position, ε and ς consist of unmodelled noise and multi-path
errors.

First, we subtract measurements from two receivers to
eliminate the atmospheric delay and satellite clock bias. This
operation is a single difference and can be represented as

Pn
vb = Pn

v −Pn
b

= ρnvb + Invb + Tn
vb + cδtvb + εnvb,

(4)

ϕn
vb = ϕn

v − ϕn
b

= ρnvb + λNn
vb − Invb + Tn

vb + cδtvb + ςnvb.
(5)

To remove the receiver clock bias, single-difference observa-
tions are differenced again over satellites. This is the double
difference model. Adopting the m-th satellite as a reference,
the new observations can be expressed as

Pnm
vb = Pn

vb −Pm
vb

= ρnmvb + Inmvb + Tnm
vb + εnmvb ,

(6)

ϕnm
vb = ϕn

vb − ϕm
vb

= ρnmvb + λNnm
vb − Inmvb + Tnm

vb + ςnmvb .
(7)

The vehicle’s relative position with respect to the base station
is contained in ρnmvb , which can be expressed as a linear
combination of the receiver-satellite geometry vector (com-
posed of the line-of-sight vectors) and the relative coordinate
components. The validity of the above model hinges on the
distance between the rover and reference station, i.e., the
baseline length. Generally, for short baselines, the atmospheric
delay terms are considerably reduced and can be basically
ignored. So the unknowns are only relative position and integer
ambiguities that can be easily estimated using a Kalman
type filter. For short baselines, the model is highly accurate;
Whereas for long baselines, the atmospheric delay terms can
be considerably different resulting in residual errors which be
modeled and estimated as parameters [13].

B. Precise Point Positioning

Unlike the RTK approach, PPP utilizes the original (un-
differented) observations but replaces the satellite clock and
orbit with accurate estimations [14]. In this model, reference
stations are usually globally distributed, and they can generate
corrections of the broadcast satellite clock (δtn) and orbit
(improving ρnv ) and transmit the information to vehicles. There
are some global networks of reference stations, such as those



managed by the International GNSS Service (IGS), providing
correction information for some post-processing applications
[15]. For real-time applications, commercial providers usually
take advantage of their own networks. At present, several
online PPP services and PPP software packages are available.

Different PPP models have been developed to deal with
the unknown parameters, including ionosphere-free PPP [16],
half sum of code and phase PPP [17], and ionospheric delay
constraint PPP [18]. Each of these models has its own ad-
vantages. In this work, we will describe the ionosphere-free
approach. It typically combines dual-frequency pseudo-range
and carrier phase data to eliminate nearly all of the ionospheric
propagation delays. It can be formulated as

Pn
v,IF =

f21P
n
v,f1
− f22Pn

v,f2

f21 − f22
= ρnv + Tn

v,IF + c (δtv − δtn) + εnv,IF ,

(8)

ϕn
v,IF =

λ1f
2
1ϕ

n
v,f1
− λ2f22ϕn

v,f2

f21 − f22
= ρnv + A + Tn

v,IF + c (δtv − δtn) + ςnv,IF ,

(9)

with

A =
λ1f

2
1N

n
v,f1
− λ2f22Nn

v,f2

f21 − f22
, (10)

where f1 and f2 denote frequency, λ1 and λ2 are the corre-
sponding wavelength. The unknown parameters include the
point position contained in ρ, the receiver clock error, the
tropospheric delay, and the ambiguities. Again, a Kalman type
filter can be used to estimate the unknowns by modeling them
in a state vector.

C. GNSS/INS Integrations

Integration of GNSS and INS is introduced to strengthen the
system performance in degraded environments. INS provides
relative positioning solution by combining attitude measure-
ments from a gyroscope and an accelerometer sensor data.
GNSS provides absolute positioning and the accuracy is stable
as long as there are enough visible satellites with good quality.
The short-term accuracy of INS is good; however, the error
accumulates with time and it grows in the long term to become
dominant. So, both systems are complementary to each other.

There are two GNSS/INS integration modes, namely tight
integration and loose integration [19]–[21]. Tight integration
performs much better than loose combination since it can work
under challenging environments with an insufficient number
of satellites [8]. The observational and state equations of
GNSS/INS tight integration can be expressed as [22]

Zk = Hkxk + ξk, (11)

xk = Φk,k−1xk−1 + ηk−1, (12)

where Zk is the innovation vector at the k-th epoch, Hk and
Φk,k−1 denote the coefficient matrix and the state transfer
matrix, xk is the state vector consisting of GNSS related
parameters and INS related parameters; ξk and ηk−1 represent
observation noise and state noise respectively.

The innovation vector is calculated by making a difference
between GNSS observations and the INS predictions, which
has different forms for RTK and PPP. For RTK/ INS integra-
tion mode [8]

Zk =

[
Pnm

vb −Pnm
vb,INS

ϕnm
vb − ϕnm

vb,INS

]
, (13)

For PPP/ INS integration mode

Zk =

[
Pn

v,IF −Pn
v,INS

ϕn
v,IF − ϕn

v,INS

]
. (14)

Based on Equation (11)–(14), the vehicle position, as well as
other unknowns, can be estimated and refined over time.

III. CHALLENGES

Theoretically, standard RTK and PPP approaches can pro-
vide seamless positioning solutions under good satellite visi-
bility conditions, but their performance is limited in degraded
environments. In urban areas, the performance is insufficient
for the autonomous vehicle application as a consequence
of blocked signals, multipath and non-line-of-sight (NLOS)
signal reception [23]. A GNSS receiver can collect both
the original and reflected signals, or worse, receiving only
the reflected signals. Signal reflection introduces an extra
propagation distance, leading to a huge positioning error. For
a vehicle in deep urban areas, the localization errors can be
as high as 50 meters or even higher because of multipath
and NLOS effects. In these environments, GNSS alone cannot
satisfy the rigorous requirements on continuity, accuracy, and
reliability of positioning. The navigation gap distribution is
shown in Fig. 3. In addition to these general challenges on
GNSS positioning, there are specific problems for RTK, PPP,
and GNSS/INS integration.

GNSS

High-Sensitivity GNSS

Rural/Open

Ground

Space

Urban/Indoors

Many
Potential
Navigation
Users

Fig. 3. The Navigation Gap [24].

A. RTK Challenges

The dominant drawback of RTK is that the validity of the
correction message provided by the reference station decreases
rapidly when the user-to-reference separation is over 20 km.
Multiple local reference stations and communications link
are needed all around an urban area. Vehicles in regions



equipped with the required infrastructures would receive local
corrections through cellular links to achieve high accuracy
location information. However, accuracy degrades near edges
of the local reference station network. When multiple reference
stations are used, the individual local reference station may
produce significantly different corrections, resulting in severe
ionospheric and tropospheric decorrelation [9]. Besides, the
coverage of the base station is limited. RTK may be not
available when the vehicle is far from the cities.

B. PPP Challenges

The accuracy of PPP can reach decimeter level (less than
2 dm) under open sky conditions, but the multipath impact
is still a problem in urban areas. Even when three-frequency
measurements are available, PPP remains an embryonic idea
for GNSS navigation in urban environments [25].

Another disadvantage of PPP is that it typically requires
dual or triple-frequency observations to estimate and eliminate
the ionospheric errors for each GNSS satellite [9]. This process
is particularly useful to remove ionospheric delays; however,
it will magnify multipath errors and other irrelevant noise
effects. In many environments, the original multipath error is
enormous, and amplifying it further dramatically penalizes the
accuracy. What is more, although some GNSS receiver man-
ufacturers have recently released dual-frequency products for
the mass market, GNSS receivers currently used in automotive
vehicles typically collect signals at a single frequency which
do not meet the accuracy required by advanced driver assis-
tance systems, autonomous driving, and vehicle-to-everything
applications [26].

Depending on the quality of the correction streams coming
from the reference stations and the environment surrounding
the vehicle, it may take a few minutes to 30 minutes to achieve
the first convergence. Compared to standard GNSS positioning
or RTK, convergence time limitation of PPP algorithms is
more pronounced. One primary reason for the long conver-
gence time is the need to average the pseudo-range observa-
tions at multiple epochs to resolve the integer carrier phase
ambiguity. It is more serious for mass market receivers due to
larger pseudo-range measurement noise and multipath errors
than that of the survey-grade receivers which are commonly
utilized in PPP applications. Taking many minutes to converge
is unacceptable for automotive applications since the vehicles
should be operable very shortly after startup [26].

C. GNSS/INS Integration Challenges

GNSS/INS integration approaches can significantly improve
localization performance, but these methods also have their
own disadvantages. The integration of GNSS and a high-
precision inertial measurement unit (IMU) can provide good
performance with high accuracy. Unfortunately, high-quality
IMUs are both bulky and expensive [27]. When we substitute
high-quality IMUs with low-cost and lower-quality micro-
electro-mechanical system (MEMS) IMUs, it is challeng-
ing to bridge GNSS outages such that the performance of
GNSS/IMU fusion may no longer satisfy the requirements.

The reason is that it is difficult to formulate the errors properly
because of the high uncertainties of nonlinear and rapid drift
in low-cost MEMS IMUs. Existing GNSS/INS integration
algorithms typically model these errors in a Kalman filter
solution using a random process such as the first or higher
order Gauss-Markov models or autoregressive models [28].
When GNSS signal outages happen, those models do not
provide sufficiently accurate information for stand-alone low-
cost IMU.

IV. DEVELOPMENTS AND TRENDS

Multiple constellations fusion provides redundancy against
signal interference and allows users to eliminate the impact
of ionospheric delays using an ionospheric-free combination.
A high degree of redundancy enables the user to exclude
degraded signals with unacceptably multipath errors while re-
taining a sufficient number of higher-precision measurements
for navigation [9]. With multiple constellations fusion, the
current limitations of the single constellation can be markedly
mitigated.

Even with multiple constellations, it is still possible to have
a very limited number of satellites in very deep urban areas
know as the urban canyon. For this reason, aided GNSS navi-
gation is an approach of critical importance. In this method, the
positioning filter integrates GNSS observations and correction
messages with the data from various sensors to compensate
for the shortcomings of GNSS. In addition to GNSS receivers
and INS, the prototypes of autonomous vehicles are equipped
with a combination of optical sensors, radar, Lidar, sonar,
odometry, speedometers, and so on [25], [29]. A camera has
become a promising sensor. When employing a stereo camera,
the vehicle motion can be directly calculated by comparing
features in the successive video frames [27]. In contrast,
if a monocular camera is applied, the motion estimation is
not straightforward because of the presence of scale-factor
ambiguity. However, this parameter can be determined with
the aid of other sensors. As mentioned before, many sensors
used in autonomous vehicles are expensive or large in size.
So developing innovative multi-sensor fusion algorithms with
mass-market products is a key objective for advancing the
field.

Following more recent trends, the development in machine
learning and deep learning has been leveraged to aid GNSS-
based positioning. For example, landmark recognition via deep
learning is a novel approach for absolute positioning [30]. In
order to reduce the multipath effect, the technique of support
vector machine has been used to detect the presence of NLOS
signals [31]. Furthermore, machine learning has been applied
to improve the performance of GNSS/INS positioning. For
instance, adaptive neuro-fuzzy inference system [32], random
forest regression [33], robust least squares support vector
machine [34], and radial basis function neural network [35]
have been utilized to refine GNSS/INS integration. These
integration approaches generally work in two different phases
of training and prediction according to the availability of
GNSS signals [28]. When the GNSS signals are available, the



neural network is trained, that is, estimating the weights of the
neural network by mapping the INS measurements to position
errors. If the local obstructions block GNSS signals, the neural
network enters the prediction phase to correct errors of the
stand-alone INS positioning and to bridge GNSS outages [28].

V. CONCLUSION

We discussed the major GNSS-based precise position-
ing approaches; namely, RTK, PPP, and GNSS/INS. These
techniques can provide accurate absolute coordinate infor-
mation for autonomous vehicles. After discussing the main
approaches, we highlighted the major challenges faced by
these techniques. Finally, we drew attention to recent devel-
opments and research trends in GNSS-based localization for
autonomous vehicles.
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