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Traditional frameworks

NB: They are based on implementable operations.

Examples:

1. Minimization of linear function (Frank-Wolfe, 1956)

2. Euclidean projection (mid-60’s)

3. Minimization of the augmented linear model of objective function

(Mirror-descent methods, Nemirovsky-Yudin, mid-70’s)

Not too many possibilities for development of minimization methods.
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New possibilities

They appear in the framework of Relative Smoothness Condition.

Main idea:

1. Assume that we know how to solve some simple minimization
problems.

2. Then we can use this know-how for solving more complicated
problems.

3. For that, the objective function of our complicated problems must be
similar to the initial simple functions.

Main question: How to measure this similarity?
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Relative Smoothness Condition

Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC) if there exist constants µ and L, 0 ≤ µ ≤ L, such that

∇2f (x) � L∇2d(x), (Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x) (Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant: For function d , define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d , then we can minimize f very efficiently

by the simple Gradient Schemes.

4 / 14



Relative Smoothness Condition
Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC) if there exist constants µ and L, 0 ≤ µ ≤ L, such that

∇2f (x) � L∇2d(x), (Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x) (Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant: For function d , define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d , then we can minimize f very efficiently

by the simple Gradient Schemes.

4 / 14



Relative Smoothness Condition
Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC)

if there exist constants µ and L, 0 ≤ µ ≤ L, such that

∇2f (x) � L∇2d(x), (Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x) (Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant: For function d , define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d , then we can minimize f very efficiently

by the simple Gradient Schemes.

4 / 14



Relative Smoothness Condition
Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC) if there exist constants µ and L, 0 ≤ µ ≤ L,

such that

∇2f (x) � L∇2d(x), (Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x) (Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant: For function d , define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d , then we can minimize f very efficiently

by the simple Gradient Schemes.

4 / 14



Relative Smoothness Condition
Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC) if there exist constants µ and L, 0 ≤ µ ≤ L, such that

∇2f (x) � L∇2d(x),

(Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x) (Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant: For function d , define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d , then we can minimize f very efficiently

by the simple Gradient Schemes.

4 / 14



Relative Smoothness Condition
Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC) if there exist constants µ and L, 0 ≤ µ ≤ L, such that

∇2f (x) � L∇2d(x), (Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x) (Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant: For function d , define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d , then we can minimize f very efficiently

by the simple Gradient Schemes.

4 / 14



Relative Smoothness Condition
Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC) if there exist constants µ and L, 0 ≤ µ ≤ L, such that

∇2f (x) � L∇2d(x), (Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x)

(Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant: For function d , define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d , then we can minimize f very efficiently

by the simple Gradient Schemes.

4 / 14



Relative Smoothness Condition
Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC) if there exist constants µ and L, 0 ≤ µ ≤ L, such that

∇2f (x) � L∇2d(x), (Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x) (Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant: For function d , define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d , then we can minimize f very efficiently

by the simple Gradient Schemes.

4 / 14



Relative Smoothness Condition
Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC) if there exist constants µ and L, 0 ≤ µ ≤ L, such that

∇2f (x) � L∇2d(x), (Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x) (Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant:

For function d , define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d , then we can minimize f very efficiently

by the simple Gradient Schemes.

4 / 14



Relative Smoothness Condition
Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC) if there exist constants µ and L, 0 ≤ µ ≤ L, such that

∇2f (x) � L∇2d(x), (Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x) (Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant: For function d ,

define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d , then we can minimize f very efficiently

by the simple Gradient Schemes.

4 / 14



Relative Smoothness Condition
Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC) if there exist constants µ and L, 0 ≤ µ ≤ L, such that

∇2f (x) � L∇2d(x), (Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x) (Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant: For function d , define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d , then we can minimize f very efficiently

by the simple Gradient Schemes.

4 / 14



Relative Smoothness Condition
Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC) if there exist constants µ and L, 0 ≤ µ ≤ L, such that

∇2f (x) � L∇2d(x), (Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x) (Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant: For function d , define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉

≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d , then we can minimize f very efficiently

by the simple Gradient Schemes.

4 / 14



Relative Smoothness Condition
Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC) if there exist constants µ and L, 0 ≤ µ ≤ L, such that

∇2f (x) � L∇2d(x), (Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x) (Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant: For function d , define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d , then we can minimize f very efficiently

by the simple Gradient Schemes.

4 / 14



Relative Smoothness Condition
Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC) if there exist constants µ and L, 0 ≤ µ ≤ L, such that

∇2f (x) � L∇2d(x), (Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x) (Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant: For function d , define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d , then we can minimize f very efficiently

by the simple Gradient Schemes.

4 / 14



Relative Smoothness Condition
Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC) if there exist constants µ and L, 0 ≤ µ ≤ L, such that

∇2f (x) � L∇2d(x), (Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x) (Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant: For function d , define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d , then we can minimize f very efficiently

by the simple Gradient Schemes.

4 / 14



Relative Smoothness Condition
Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC) if there exist constants µ and L, 0 ≤ µ ≤ L, such that

∇2f (x) � L∇2d(x), (Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x) (Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant: For function d , define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d , then we can minimize f very efficiently

by the simple Gradient Schemes.

4 / 14



Relative Smoothness Condition
Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC) if there exist constants µ and L, 0 ≤ µ ≤ L, such that

∇2f (x) � L∇2d(x), (Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x) (Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant: For function d , define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d ,

then we can minimize f very efficiently

by the simple Gradient Schemes.

4 / 14



Relative Smoothness Condition
Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC) if there exist constants µ and L, 0 ≤ µ ≤ L, such that

∇2f (x) � L∇2d(x), (Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x) (Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant: For function d , define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d , then we can minimize f very efficiently

by the simple Gradient Schemes.

4 / 14



Relative Smoothness Condition
Let d ∈ dom d ⊆ Rn be a simple convex function.

We say that function f ∈ C2(dom d) satisfies Relative Smoothness
Condition (RSC) if there exist constants µ and L, 0 ≤ µ ≤ L, such that

∇2f (x) � L∇2d(x), (Bauschke, Beck, Teboulle, 2017),

∇2f (x) � µ∇2d(x) (Lu, Freund, N., 2018)

for all x ∈ dom d .

First-order variant: For function d , define the Bregmann distance:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 0, x , y ∈ dom d .

Then f satisfies RSC if

µβd(x , y) ≤ βf (x , y) ≤ Lβd(x , y), x , y ∈ dom d .

Main advantage:

If we can easily minimize d , then we can minimize f very efficiently

by the simple Gradient Schemes.
4 / 14



Simple Gradient Method

Problem: min
x∈Q

f (x),

where

I Q is a closed convex set.

I f satisfies RSC on Q for some scaling function d with Q ⊆ dom d .

Main Assumption: we can solve the problem min
x∈Q
{〈g , x〉+ d(x)}

with any vector g ∈ Rn.

Gradient Method: Choose x0 ∈ Q and iterate

xk+1 ∈ Arg min
x∈Q

{
〈∇f (xk), x − xk〉+ Lβd(xk , x)

}
, k ≥ 0.

Simple property: f (xk+1) ≤ f (xk), k ≥ 0.
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Global rate of convergence

Denote γ = µ
L (Condition number). We assume that µ and L are known.

During the process, for T ≥ 1, we update the following model of the
objective function:

`T (x) = γ
1−(1−γ)T

T∑
k=1

(1− γ)T−k
[
f (xk) + 〈∇f (xk), x − xk〉+ µβd(xk , x)

]
.

NB: `T (x) ≤ f (x) for all x in Q.

Theorem. For all T ≥ 1 and x ∈ Q we have

f (xT ) + Lβd(xT , x) ≤ µ(1−γ)T

1−(1−γ)T
βd(x0, x) + `T (x).

Corrollary: f (xT )− f ∗ ≤ µ(1−γ)T

1−(1−γ)T
βd(x0, x

∗).

NB: When µ→ 0, we get the following limit:

f (xT )− f ∗ ≤ L
T βd(x0, x

∗).
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Accuracy certificate

Assume that we know some set N containing the solution x∗.

Then f ∗ ≥ `∗T (N )
def
= min

x∈Q
⋂
N
`T (x).

At the same time,

f (xT )− `∗T (N ) ≤ µ(1−γ)T

1−(1−γ)T
max

x∈Q
⋂
N
βd(x0, x).

Most natural choice:

N = {x : βd(x0, x) ≤ D}.

NB: 1. In many situations, N and D are explicitly known.

2. The rate of convergence is not as good as for the Fast Gradient
Methods.

However, the field of applications is much wider.
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Examples

1. Strongly convex functions with Lipschitz-continuous gradient.

Indeed, choosing d(x) = 1
2‖x‖

2
(2), we have

µI � ∇2f (x) � LI for all x ∈ Rn.

2. Bounded growth of the Hessian. Let ‖∇2f (x)‖ ≤ L(1 + ‖x‖r(2)).

Then for d(x) = 1
r+2‖x‖

r+2
(2) + 1

2‖x‖
2
(2), function f satisfies RSC with L.

3. Splitting the objective. Let F (x) = f (x) + ψ(x) with simple ψ(·) and

∇2f (x) � γ∇2ψ(x).

Then µ = 1 and L = 1 + γ.

Compare: Fast inversion of Laplacians (Spilmann, Tao (2010), ...)

For solving the system Ax = b with Laplacian A � 0, we represent

〈Ax , x〉 =
m∑
i=1

〈ai , x〉2 =
∑
i∈T
〈ai , x〉2 +

∑
i 6∈T
〈ai , x〉2

def
= B + C ,

with C � LB, and use B as a preconditioner.
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Example: Third-order method

Problem: min
x∈Rn

f (x),

where function f ∈ C3,1
L (Rn) is convex.

Consider the regularized Taylor polynomial of degree three:

Ωx̄,H(x) = f (x̄) + 〈∇f (x̄), x − x̄〉+ 1
2 〈∇

2f (x̄)(x − x̄), x − x̄〉

+ 1
6D

3f (x̄)[y − x̄ ]3 + H
24‖x − x̄‖4

(2).

Theorem (N.2018). If H ≥ 3L then Ωx̄,H(·) is a convex polynomial.

Main question: How to minimize it?

Answer: by the Gradient Method based on RSC.

Let τ =
√

H
3L > 1. Define

dx̄,τ (x) = 1
2

(
1− 1

τ

)
〈∇2f (x̄)(x − x̄), x − x̄〉+ τ(τ−1)L

8 ‖x − x̄‖4
(2).

Then ∇2dx̄,τ (x) � ∇Ωx̄,H(x) � τ+1
τ−1∇

2dx̄,τ (x).

Choosing τ = 2 (this is H = 12L), we have γ = 1
3 .
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Nondifferentiable Functions

Main diffculties:

I The subgradients are discontinuous.

I The norm of subgradient does not describe well the growth of the
function.

Definition.

Let function ϕ be strictly increasing, 0 ∈ domϕ ⊆ R, and ϕ(0) = 0.

We say that f has a Bounded Growth with respect to d(·) and ϕ(·)
if for any x , y ∈ dom f and gf ∈ ∂f (x), we have

〈gf , x − y〉 ≤ ϕ−1(βd(x , y)),

where ϕ−1(·) is the inverse of function ϕ(·), and

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉, x , y ∈ dom d .
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Examples

1. Functions with bounded subgradients. Assume that the scaling
function is strongly convex:

βd(x , y) = d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 1
2‖x − y‖2, x , y ∈ dom d .

Then for any function with bounded subgradients:

‖g‖∗ ≤ M for all g ∈ ∂f (x) and all x ∈ dom f ,

we have 〈g , x − y〉 ≤ M‖x − y‖ ≤ M
√

2βd(x , y).

Thus, we can take ϕ(τ) = τ 2

2M2 .

2. Local Lipschitz condition. Let d(·) be a self-concordant function:

D3d(x)[h]3 ≤ 2〈∇2d(x)h, h)〉1/2 for all x ∈ dom d and h ∈ Rn.

Local norms: ‖h‖x = 〈∇2f (x)h, h〉1/2, ‖g‖∗x = 〈g , [∇2f (x)]−1g〉1/2.

Def. We call f Locally Lipschitz Continuous (with respect to d) if

‖g‖∗x ≤ M for all g ∈ ∂f (x), x ∈ dom f .

Theorem: function f has Bounded Growth with ϕ(τ) = ω
(
τ
M

)
,

where ω(τ) = τ − ln(1 + τ).
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Examples

3. Positive concave functions.

Consider the following maximization problem:

max
x∈Q

ψ(x),

where

I Q is a closed bounded convex set, for which we know a
self-concordant barrier d(·),

I ψ(·) is a concave function.

Assumption. Function ψ(·) is non-negative on Q.

Theorem. Function f (x) = − lnψ(x) has Bounded Growth on Q with

M = 1.

NB: By minimizing f (·) with absolute accuracy, we maximize ψ(·) with
relative accuracy.
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Primal Gradient Method

Consider the problem min
x∈Q

f (x), where

I Q is a closed convex set,

I function f has Bounded Growth with respect to (d , ϕ).

Define the Bregmann mapping

Th(x̄ , g) = arg min
x∈Q

{
〈g , x − x̄〉+ 1

hβd(x̄ , x)
}

.

Gradient Method: xk+1 = Thk (xk , gk), k ≥ 0,

where gk ∈ ∂f (xk), hk > 0, and x0 ∈ Q.

Theorem. Denote ST =
T∑

k=0

hk . Then

∆T
def
= min

0≤k≤T
f (xk)− f ∗ ≤ 1

ST

[
βd(x0, x

∗) +
T∑

k=0

ϕ∗(hk)

]
,

where ϕ∗(t) = max
τ≥0
{τ t − ϕ(τ)}.

Examples: hk ≈ 1√
k+1

, ∆T ≤ O
(

1√
T

)
.
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Conclusion

1. Relative Smoothness Condition provides a new framework for
development of new and efficient optimization schemes.

2. It is able to fit well the properties of the particular objective function.

3. It is very new. We are looking for the new and motivating applications.

Thank you for your attention!
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