Relative Smoothness: New Paradigm in Convex Optimization

Yurii Nesterov (CORE/INMA, UCL, Belgium)

September 4, 2019 (EUSIPCO 2019, A Coruña, Spain)

NB:

NB: They are based on implementable operations.

NB: They are based on implementable *operations*.

NB: They are based on implementable *operations*.

Examples:

1. Minimization of linear function

NB: They are based on implementable *operations*.

Examples:

1. Minimization of linear function (Frank-Wolfe, 1956)

NB: They are based on implementable *operations*.

- 1. Minimization of linear function (Frank-Wolfe, 1956)
- 2. Euclidean projection

NB: They are based on implementable *operations*.

- 1. Minimization of linear function (Frank-Wolfe, 1956)
- 2. Euclidean projection (mid-60's)

NB: They are based on implementable *operations*.

- 1. Minimization of linear function (Frank-Wolfe, 1956)
- 2. Euclidean projection (mid-60's)
- 3. Minimization of the augmented linear model of objective function

NB: They are based on implementable *operations*.

- 1. Minimization of linear function (Frank-Wolfe, 1956)
- 2. Euclidean projection (mid-60's)
- **3.** *Minimization of the augmented linear model of objective function* (Mirror-descent methods,

NB: They are based on implementable *operations*.

- 1. Minimization of linear function (Frank-Wolfe, 1956)
- 2. Euclidean projection (mid-60's)
- **3.** *Minimization of the augmented linear model of objective function* (Mirror-descent methods, Nemirovsky-Yudin, mid-70's)

NB: They are based on implementable *operations*.

Examples:

- 1. Minimization of linear function (Frank-Wolfe, 1956)
- 2. Euclidean projection (mid-60's)

3. *Minimization of the augmented linear model of objective function* (Mirror-descent methods, Nemirovsky-Yudin, mid-70's)

Not too many possibilities for development of minimization methods.

They appear in the framework of *Relative Smoothness Condition*.

They appear in the framework of *Relative Smoothness Condition*.

Main idea:

They appear in the framework of *Relative Smoothness Condition*.

Main idea:

1. Assume that we know how to solve some *simple* minimization problems.

They appear in the framework of *Relative Smoothness Condition*.

Main idea:

1. Assume that we know how to solve some *simple* minimization problems.

2. Then we can use this *know-how* for solving more complicated problems.

They appear in the framework of *Relative Smoothness Condition*.

Main idea:

1. Assume that we know how to solve some *simple* minimization problems.

2. Then we can use this *know-how* for solving more complicated problems.

3. For that, the objective function of our complicated problems must be *similar* to the initial simple functions.

They appear in the framework of *Relative Smoothness Condition*.

Main idea:

1. Assume that we know how to solve some *simple* minimization problems.

2. Then we can use this *know-how* for solving more complicated problems.

3. For that, the objective function of our complicated problems must be *similar* to the initial simple functions.

Main question:

They appear in the framework of *Relative Smoothness Condition*.

Main idea:

1. Assume that we know how to solve some *simple* minimization problems.

2. Then we can use this *know-how* for solving more complicated problems.

3. For that, the objective function of our complicated problems must be *similar* to the initial simple functions.

Main question: How to measure this similarity?

Let $d \in \text{dom } d \subseteq \mathbb{R}^n$ be a simple convex function.

Let $d \in \operatorname{dom} d \subseteq \mathbb{R}^n$ be a simple convex function.

We say that function $f \in \mathbb{C}^2(\text{dom } d)$ satisfies *Relative Smoothness Condition* (RSC)

Let $d \in \operatorname{dom} d \subseteq \mathbb{R}^n$ be a simple convex function.

We say that function $f \in \mathbb{C}^2(\text{dom } d)$ satisfies *Relative Smoothness Condition* (RSC) if there exist constants μ and L, $0 \le \mu \le L$,

Let $d \in \text{dom } d \subseteq \mathbb{R}^n$ be a simple convex function.

We say that function $f \in \mathbb{C}^2(\text{dom } d)$ satisfies *Relative Smoothness Condition* (RSC) if there exist constants μ and L, $0 \le \mu \le L$, such that

 $\nabla^2 f(x) \preceq L \nabla^2 d(x),$

Let $d \in \operatorname{dom} d \subseteq \mathbb{R}^n$ be a simple convex function.

We say that function $f \in \mathbb{C}^2(\text{dom } d)$ satisfies *Relative Smoothness Condition* (RSC) if there exist constants μ and L, $0 \le \mu \le L$, such that

 $\nabla^2 f(x) \preceq L \nabla^2 d(x)$, (Bauschke, Beck, Teboulle, 2017),

Let $d \in \text{dom } d \subseteq \mathbb{R}^n$ be a simple convex function.

We say that function $f \in \mathbb{C}^2(\text{dom } d)$ satisfies *Relative Smoothness Condition* (RSC) if there exist constants μ and L, $0 \le \mu \le L$, such that

 $\nabla^2 f(x) \leq L \nabla^2 d(x)$, (Bauschke, Beck, Teboulle, 2017),

 $\nabla^2 f(x) \succeq \mu \nabla^2 d(x)$

Let $d \in \text{dom } d \subseteq \mathbb{R}^n$ be a simple convex function.

We say that function $f \in \mathbb{C}^2(\text{dom } d)$ satisfies *Relative Smoothness Condition* (RSC) if there exist constants μ and L, $0 \le \mu \le L$, such that

 $\nabla^2 f(x) \leq L \nabla^2 d(x)$, (Bauschke, Beck, Teboulle, 2017),

 $\nabla^2 f(x) \succeq \mu \nabla^2 d(x)$ (Lu, Freund, N., 2018)

for all $x \in \operatorname{dom} d$.

Let $d \in \text{dom } d \subseteq \mathbb{R}^n$ be a simple convex function.

We say that function $f \in \mathbb{C}^2(\text{dom } d)$ satisfies *Relative Smoothness Condition* (RSC) if there exist constants μ and L, $0 \le \mu \le L$, such that

 $\nabla^2 f(x) \leq L \nabla^2 d(x)$, (Bauschke, Beck, Teboulle, 2017),

 $\nabla^2 f(x) \succeq \mu \nabla^2 d(x)$ (Lu, Freund, N., 2018)

for all $x \in \operatorname{dom} d$.

First-order variant:

Let $d \in \text{dom } d \subseteq \mathbb{R}^n$ be a simple convex function.

We say that function $f \in \mathbb{C}^2(\text{dom } d)$ satisfies *Relative Smoothness Condition* (RSC) if there exist constants μ and L, $0 \le \mu \le L$, such that

 $\nabla^2 f(x) \leq L \nabla^2 d(x)$, (Bauschke, Beck, Teboulle, 2017),

 $\nabla^2 f(x) \succeq \mu \nabla^2 d(x)$ (Lu, Freund, N., 2018)

for all $x \in \operatorname{dom} d$.

First-order variant: For function d,

Let $d \in \text{dom } d \subseteq \mathbb{R}^n$ be a simple convex function.

We say that function $f \in \mathbb{C}^2(\text{dom } d)$ satisfies *Relative Smoothness Condition* (RSC) if there exist constants μ and L, $0 \le \mu \le L$, such that

 $\nabla^2 f(x) \preceq L \nabla^2 d(x)$, (Bauschke, Beck, Teboulle, 2017),

 $\nabla^2 f(x) \succeq \mu \nabla^2 d(x)$ (Lu, Freund, N., 2018)

for all $x \in \text{dom } d$.

First-order variant: For function *d*, define the *Bregmann distance*:

Let $d \in \text{dom } d \subseteq \mathbb{R}^n$ be a simple convex function.

We say that function $f \in \mathbb{C}^2(\text{dom } d)$ satisfies *Relative Smoothness Condition* (RSC) if there exist constants μ and L, $0 \le \mu \le L$, such that

 $\nabla^2 f(x) \preceq L \nabla^2 d(x)$, (Bauschke, Beck, Teboulle, 2017),

 $\nabla^2 f(x) \succeq \mu \nabla^2 d(x)$ (Lu, Freund, N., 2018)

for all $x \in \text{dom } d$.

First-order variant: For function *d*, define the *Bregmann distance*:

$$\beta_d(x,y) = d(y) - d(x) - \langle \nabla d(x), y - x \rangle$$

Let $d \in \text{dom } d \subseteq \mathbb{R}^n$ be a simple convex function.

We say that function $f \in \mathbb{C}^2(\text{dom } d)$ satisfies *Relative Smoothness Condition* (RSC) if there exist constants μ and L, $0 \le \mu \le L$, such that

 $\nabla^2 f(x) \preceq L \nabla^2 d(x)$, (Bauschke, Beck, Teboulle, 2017),

 $\nabla^2 f(x) \succeq \mu \nabla^2 d(x)$ (Lu, Freund, N., 2018)

for all $x \in \text{dom } d$.

First-order variant: For function *d*, define the *Bregmann distance*:

$$eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \ge 0, \quad x,y \in \operatorname{dom} d.$$

Let $d \in \text{dom } d \subseteq \mathbb{R}^n$ be a simple convex function.

We say that function $f \in \mathbb{C}^2(\text{dom } d)$ satisfies *Relative Smoothness Condition* (RSC) if there exist constants μ and L, $0 \le \mu \le L$, such that

 $\nabla^2 f(x) \preceq L \nabla^2 d(x)$, (Bauschke, Beck, Teboulle, 2017),

 $\nabla^2 f(x) \succeq \mu \nabla^2 d(x)$ (Lu, Freund, N., 2018)

for all $x \in \text{dom } d$.

First-order variant: For function d, define the Bregmann distance:

 $eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \ge 0, \quad x,y \in \operatorname{dom} d.$

Then f satisfies RSC if

Let $d \in \text{dom } d \subseteq \mathbb{R}^n$ be a simple convex function.

We say that function $f \in \mathbb{C}^2(\text{dom } d)$ satisfies *Relative Smoothness Condition* (RSC) if there exist constants μ and L, $0 \le \mu \le L$, such that

 $\nabla^2 f(x) \preceq L \nabla^2 d(x)$, (Bauschke, Beck, Teboulle, 2017),

 $\nabla^2 f(x) \succeq \mu \nabla^2 d(x)$ (Lu, Freund, N., 2018)

for all $x \in \text{dom } d$.

First-order variant: For function *d*, define the *Bregmann distance*:

$$eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq 0, \quad x,y \in \mathrm{dom}\, d.$$

Then f satisfies RSC if

$$\mu\beta_d(x,y) \leq \beta_f(x,y) \leq L\beta_d(x,y), x,y \in \operatorname{dom} d.$$
Let $d \in \text{dom } d \subseteq \mathbb{R}^n$ be a simple convex function.

We say that function $f \in \mathbb{C}^2(\text{dom } d)$ satisfies *Relative Smoothness Condition* (RSC) if there exist constants μ and L, $0 \le \mu \le L$, such that

 $\nabla^2 f(x) \preceq L \nabla^2 d(x)$, (Bauschke, Beck, Teboulle, 2017),

 $\nabla^2 f(x) \succeq \mu \nabla^2 d(x)$ (Lu, Freund, N., 2018)

for all $x \in \text{dom } d$.

First-order variant: For function *d*, define the *Bregmann distance*:

$$eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq 0, \quad x,y \in \operatorname{dom} d.$$

Then f satisfies RSC if

$$\mu\beta_d(x,y) \leq \beta_f(x,y) \leq L\beta_d(x,y), x,y \in \operatorname{dom} d.$$

Main advantage:

Let $d \in \text{dom } d \subseteq \mathbb{R}^n$ be a simple convex function.

We say that function $f \in \mathbb{C}^2(\text{dom } d)$ satisfies *Relative Smoothness Condition* (RSC) if there exist constants μ and L, $0 \le \mu \le L$, such that

 $\nabla^2 f(x) \preceq L \nabla^2 d(x)$, (Bauschke, Beck, Teboulle, 2017),

 $\nabla^2 f(x) \succeq \mu \nabla^2 d(x)$ (Lu, Freund, N., 2018)

for all $x \in \text{dom } d$.

First-order variant: For function *d*, define the *Bregmann distance*:

$$eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq 0, \quad x,y \in \operatorname{dom} d.$$

Then f satisfies RSC if

$$\mu\beta_d(x,y) \leq \beta_f(x,y) \leq L\beta_d(x,y), x,y \in \operatorname{dom} d.$$

Main advantage:

If we can easily minimize d,

Let $d \in \text{dom } d \subseteq \mathbb{R}^n$ be a simple convex function.

We say that function $f \in \mathbb{C}^2(\text{dom } d)$ satisfies *Relative Smoothness Condition* (RSC) if there exist constants μ and L, $0 \le \mu \le L$, such that

 $\nabla^2 f(x) \leq L \nabla^2 d(x)$, (Bauschke, Beck, Teboulle, 2017),

 $\nabla^2 f(x) \succeq \mu \nabla^2 d(x)$ (Lu, Freund, N., 2018)

for all $x \in \operatorname{dom} d$.

First-order variant: For function *d*, define the *Bregmann distance*:

$$eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq 0, \quad x,y \in \operatorname{dom} d.$$

Then f satisfies RSC if

$$\mu\beta_d(x,y) \leq \beta_f(x,y) \leq L\beta_d(x,y), x,y \in \operatorname{dom} d.$$

Main advantage:

If we can easily minimize d, then we can minimize f very efficiently

Let $d \in \text{dom } d \subseteq \mathbb{R}^n$ be a simple convex function.

We say that function $f \in \mathbb{C}^2(\text{dom } d)$ satisfies *Relative Smoothness Condition* (RSC) if there exist constants μ and L, $0 \le \mu \le L$, such that

 $\nabla^2 f(x) \preceq L \nabla^2 d(x)$, (Bauschke, Beck, Teboulle, 2017),

 $\nabla^2 f(x) \succeq \mu \nabla^2 d(x)$ (Lu, Freund, N., 2018)

for all $x \in \text{dom } d$.

First-order variant: For function *d*, define the *Bregmann distance*:

$$eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq 0, \quad x,y \in \operatorname{dom} d.$$

Then f satisfies RSC if

$$\mu\beta_d(x,y) \leq \beta_f(x,y) \leq L\beta_d(x,y), x,y \in \operatorname{dom} d.$$

Main advantage:

If we can easily minimize *d*, then we can minimize *f* very efficiently by the simple *Gradient Schemes*.

Problem:

Problem: $\min_{x\in Q} f(x),$

where

Problem: $\min_{x \in Q} f(x)$,

where

► Q is a closed convex set.

Problem: $\min_{x \in Q} f(x)$,

where

- ► Q is a closed convex set.
- f satisfies RSC on Q

Problem: $\min_{x \in Q} f(x)$,

where

- ► Q is a closed convex set.
- f satisfies RSC on Q for some scaling function d with $Q \subseteq \operatorname{dom} d$.

Problem: $\min_{x \in Q} f(x)$,

where

- ► Q is a closed convex set.
- f satisfies RSC on Q for some scaling function d with $Q \subseteq \operatorname{dom} d$.

Main Assumption:

Problem: $\min_{x \in Q} f(x)$,

where

- ► Q is a closed convex set.
- f satisfies RSC on Q for some scaling function d with $Q \subseteq \operatorname{dom} d$.

Main Assumption: we can solve the problem

 $\min_{x\in Q}\{\langle g,x\rangle+d(x)\}$

Problem: $\min_{x \in Q} f(x)$,

where

- ► Q is a closed convex set.
- ▶ *f* satisfies RSC on *Q* for some scaling function *d* with $Q \subseteq \text{dom } d$.

Main Assumption: we can solve the problem

$$\min_{x\in Q}\{\langle g,x\rangle+d(x)\}$$

with any vector $g \in \mathbb{R}^n$.

Problem: $\min_{x \in Q} f(x)$,

where

- ► Q is a closed convex set.
- f satisfies RSC on Q for some scaling function d with $Q \subseteq \operatorname{dom} d$.

Main Assumption: we can solve the problem

$$\min_{x\in Q}\{\langle g,x\rangle+d(x)\}$$

with any vector $g \in \mathbb{R}^n$.

Gradient Method:

Problem: $\min_{x \in Q} f(x)$,

where

- ► Q is a closed convex set.
- f satisfies RSC on Q for some scaling function d with $Q \subseteq \operatorname{dom} d$.

Main Assumption: we can solve the problem

$$\min_{x\in Q}\{\langle g,x\rangle+d(x)\}$$

with any vector $g \in \mathbb{R}^n$.

Gradient Method: Choose $x_0 \in Q$ and iterate

Problem: $\min_{x \in Q} f(x)$,

where

- ► Q is a closed convex set.
- f satisfies RSC on Q for some scaling function d with $Q \subseteq \operatorname{dom} d$.

Main Assumption: we can solve the problem

 $\min_{x\in Q}\{\langle g,x\rangle+d(x)\}$

with any vector $g \in \mathbb{R}^n$.

Gradient Method: Choose $x_0 \in Q$ and iterate

$$x_{k+1} \in \operatorname{Arg\,min}_{x \in Q} \left\{ \langle \nabla f(x_k), x - x_k \rangle + L \beta_d(x_k, x) \right\}, k \geq 0.$$

Problem: $\min_{x \in Q} f(x)$,

where

- ► Q is a closed convex set.
- f satisfies RSC on Q for some scaling function d with $Q \subseteq \operatorname{dom} d$.

Main Assumption: we can solve the problem

 $\min_{x\in Q}\{\langle g,x\rangle+d(x)\}$

with any vector $g \in \mathbb{R}^n$.

Gradient Method: Choose $x_0 \in Q$ and iterate

$$x_{k+1} \in \operatorname{Arg\,min}_{x \in Q} \left\{ \langle \nabla f(x_k), x - x_k \rangle + L \beta_d(x_k, x) \right\}, k \geq 0.$$

Simple property:

Problem: $\min_{x \in Q} f(x),$

where

- Q is a closed convex set.
- ▶ *f* satisfies RSC on *Q* for some scaling function *d* with $Q \subseteq \text{dom } d$.

Main Assumption: we can solve the problem $\lim_{x \in Q} \{\langle g, x \rangle + d(x)\}$

with any vector $g \in \mathbb{R}^n$.

Gradient Method: Choose $x_0 \in Q$ and iterate

$$x_{k+1} \in \operatorname{Arg\,min}_{x \in Q} \left\{ \langle \nabla f(x_k), x - x_k \rangle + L \beta_d(x_k, x) \right\}, k \geq 0.$$

Simple property: $f(x_{k+1}) \leq f(x_k), k > 0.$

Denote $\gamma = \frac{\mu}{I}$

Denote $\gamma = \frac{\mu}{L}$ (Condition number).

Denote $\gamma = \frac{\mu}{L}$ (Condition number). We assume that μ and L are known.

Denote $\gamma = \frac{\mu}{L}$ (Condition number). We assume that μ and L are known. During the process,

Denote $\gamma = \frac{\mu}{L}$ (Condition number). We assume that μ and L are known. During the process, for $T \ge 1$, we update the following *model* of the objective function:

Denote $\gamma = \frac{\mu}{L}$ (Condition number). We assume that μ and L are known. During the process, for $T \ge 1$, we update the following *model* of the objective function:

$$\ell_{T}(x) = \frac{\gamma}{1-(1-\gamma)^{T}} \sum_{k=1}^{T} (1-\gamma)^{T-k} \Big[f(x_{k}) + \langle \nabla f(x_{k}), x-x_{k} \rangle + \mu \beta_{d}(x_{k}, x) \Big].$$

Denote $\gamma = \frac{\mu}{L}$ (Condition number). We assume that μ and L are known. During the process, for $T \ge 1$, we update the following *model* of the objective function:

$$\ell_{\mathcal{T}}(x) = \frac{\gamma}{1-(1-\gamma)^{\mathcal{T}}} \sum_{k=1}^{\mathcal{T}} (1-\gamma)^{\mathcal{T}-k} \Big[f(x_k) + \langle \nabla f(x_k), x-x_k \rangle + \mu \beta_d(x_k, x) \Big].$$

NB:

Denote $\gamma = \frac{\mu}{L}$ (Condition number). We assume that μ and L are known. During the process, for $T \ge 1$, we update the following *model* of the objective function:

$$\ell_{T}(x) = \frac{\gamma}{1-(1-\gamma)^{T}} \sum_{k=1}^{T} (1-\gamma)^{T-k} \Big[f(x_{k}) + \langle \nabla f(x_{k}), x-x_{k} \rangle + \mu \beta_{d}(x_{k}, x) \Big].$$

NB: $\ell_T(x) \leq f(x)$ for all x in Q.

Denote $\gamma = \frac{\mu}{L}$ (Condition number). We assume that μ and L are known. During the process, for $T \ge 1$, we update the following *model* of the objective function:

$$\ell_{T}(x) = \frac{\gamma}{1-(1-\gamma)^{T}} \sum_{k=1}^{T} (1-\gamma)^{T-k} \Big[f(x_{k}) + \langle \nabla f(x_{k}), x-x_{k} \rangle + \mu \beta_{d}(x_{k}, x) \Big].$$

NB: $\ell_T(x) \leq f(x)$ for all x in Q.

Theorem. For all $T \ge 1$ and $x \in Q$ we have

Denote $\gamma = \frac{\mu}{L}$ (Condition number). We assume that μ and L are known. During the process, for $T \ge 1$, we update the following *model* of the objective function:

$$\ell_{T}(x) = \frac{\gamma}{1-(1-\gamma)^{T}} \sum_{k=1}^{T} (1-\gamma)^{T-k} \Big[f(x_{k}) + \langle \nabla f(x_{k}), x-x_{k} \rangle + \mu \beta_{d}(x_{k}, x) \Big].$$

NB: $\ell_T(x) \leq f(x)$ for all x in Q.

Theorem. For all $T \ge 1$ and $x \in Q$ we have

$$f(x_T) + L\beta_d(x_T, x) \leq \frac{\mu(1-\gamma)^T}{1-(1-\gamma)^T}\beta_d(x_0, x) + \ell_T(x).$$

Denote $\gamma = \frac{\mu}{L}$ (Condition number). We assume that μ and L are known. During the process, for $T \ge 1$, we update the following *model* of the objective function:

$$\ell_{T}(x) = \frac{\gamma}{1-(1-\gamma)^{T}} \sum_{k=1}^{T} (1-\gamma)^{T-k} \Big[f(x_{k}) + \langle \nabla f(x_{k}), x-x_{k} \rangle + \mu \beta_{d}(x_{k}, x) \Big].$$

NB: $\ell_T(x) \leq f(x)$ for all x in Q.

Theorem. For all $T \ge 1$ and $x \in Q$ we have

$$f(x_T) + Leta_d(x_T, x) \leq rac{\mu(1-\gamma)^T}{1-(1-\gamma)^T}eta_d(x_0, x) + \ell_T(x).$$

Corrollary:

Denote $\gamma = \frac{\mu}{L}$ (Condition number). We assume that μ and L are known. During the process, for $T \ge 1$, we update the following *model* of the objective function:

$$\ell_{T}(x) = \frac{\gamma}{1-(1-\gamma)^{T}} \sum_{k=1}^{T} (1-\gamma)^{T-k} \Big[f(x_{k}) + \langle \nabla f(x_{k}), x-x_{k} \rangle + \mu \beta_{d}(x_{k}, x) \Big].$$

NB: $\ell_T(x) \leq f(x)$ for all x in Q.

Theorem. For all $T \ge 1$ and $x \in Q$ we have

$$f(x_T) + Leta_d(x_T, x) \leq rac{\mu(1-\gamma)^T}{1-(1-\gamma)^T}eta_d(x_0, x) + \ell_T(x).$$

Corrollary: $f(x_T) - f^* \leq \frac{\mu(1-\gamma)^T}{1-(1-\gamma)^T} \beta_d(x_0, x^*).$

Denote $\gamma = \frac{\mu}{L}$ (Condition number). We assume that μ and L are known. During the process, for $T \ge 1$, we update the following *model* of the objective function:

$$\ell_{T}(x) = \frac{\gamma}{1-(1-\gamma)^{T}} \sum_{k=1}^{T} (1-\gamma)^{T-k} \Big[f(x_{k}) + \langle \nabla f(x_{k}), x-x_{k} \rangle + \mu \beta_{d}(x_{k}, x) \Big].$$

NB: $\ell_T(x) \leq f(x)$ for all x in Q.

Theorem. For all $T \ge 1$ and $x \in Q$ we have

$$f(x_T) + Leta_d(x_T, x) \quad \leq \quad rac{\mu(1-\gamma)^T}{1-(1-\gamma)^T}eta_d(x_0, x) + \ell_T(x).$$

Corrollary: $f(x_T) - f^* \leq \frac{\mu(1-\gamma)^T}{1-(1-\gamma)^T} \beta_d(x_0, x^*).$

NB:

Denote $\gamma = \frac{\mu}{L}$ (Condition number). We assume that μ and L are known. During the process, for $T \ge 1$, we update the following *model* of the objective function:

$$\ell_{T}(x) = \frac{\gamma}{1-(1-\gamma)^{T}} \sum_{k=1}^{T} (1-\gamma)^{T-k} \Big[f(x_{k}) + \langle \nabla f(x_{k}), x-x_{k} \rangle + \mu \beta_{d}(x_{k}, x) \Big].$$

NB: $\ell_T(x) \leq f(x)$ for all x in Q.

Theorem. For all $T \ge 1$ and $x \in Q$ we have

$$f(x_T) + Leta_d(x_T, x) \leq rac{\mu(1-\gamma)^T}{1-(1-\gamma)^T}eta_d(x_0, x) + \ell_T(x).$$

Corrollary: $f(x_T) - f^* \leq \frac{\mu(1-\gamma)^T}{1-(1-\gamma)^T} \beta_d(x_0, x^*).$

NB: When $\mu \rightarrow 0$, we get the following limit:

Denote $\gamma = \frac{\mu}{L}$ (Condition number). We assume that μ and L are known. During the process, for $T \ge 1$, we update the following *model* of the objective function:

$$\ell_{T}(x) = \frac{\gamma}{1-(1-\gamma)^{T}} \sum_{k=1}^{T} (1-\gamma)^{T-k} \Big[f(x_{k}) + \langle \nabla f(x_{k}), x-x_{k} \rangle + \mu \beta_{d}(x_{k}, x) \Big].$$

NB: $\ell_T(x) \leq f(x)$ for all x in Q.

Theorem. For all $T \ge 1$ and $x \in Q$ we have

$$f(x_{\mathcal{T}}) + Leta_d(x_{\mathcal{T}}, x) \quad \leq \quad rac{\mu(1-\gamma)^{\mathcal{T}}}{1-(1-\gamma)^{\mathcal{T}}}eta_d(x_0, x) + \ell_{\mathcal{T}}(x).$$

Corrollary: $f(x_T) - f^* \leq \frac{\mu(1-\gamma)^T}{1-(1-\gamma)^T} \beta_d(x_0, x^*).$

NB: When $\mu \rightarrow 0$, we get the following limit:

$$f(x_T) - f^* \leq \frac{L}{T} \beta_d(x_0, x^*).$$

Accuracy certificate
Assume that we know some set $\mathcal N$ containing the solution x^* .

Assume that we know some set $\mathcal N$ containing the solution x^* .

Then
$$f^* \ge \ell^*_T(\mathcal{N}) \stackrel{\text{def}}{=} \min_{x \in Q \bigcap \mathcal{N}} \ell_T(x).$$

Assume that we know some set $\mathcal N$ containing the solution x^* .

Then
$$f^* \ge \ell^*_T(\mathcal{N}) \stackrel{\text{def}}{=} \min_{x \in Q \cap \mathcal{N}} \ell_T(x).$$

At the same time,

Assume that we know some set $\mathcal N$ containing the solution x^* .

Then
$$f^* \ge \ell^*_T(\mathcal{N}) \stackrel{\text{def}}{=} \min_{x \in Q \cap \mathcal{N}} \ell_T(x).$$

At the same time,

$$f(x_T) - \ell_T^*(\mathcal{N}) \leq \frac{\mu(1-\gamma)^T}{1-(1-\gamma)^T} \max_{x \in \mathcal{Q} \cap \mathcal{N}} \beta_d(x_0, x).$$

Assume that we know some set $\mathcal N$ containing the solution x^* .

Then
$$f^* \ge \ell^*_T(\mathcal{N}) \stackrel{\text{def}}{=} \min_{x \in Q \cap \mathcal{N}} \ell_T(x).$$

At the same time,

$$f(x_T) - \ell_T^*(\mathcal{N}) \leq \frac{\mu(1-\gamma)^T}{1-(1-\gamma)^T} \max_{x \in \mathcal{Q} \cap \mathcal{N}} \beta_d(x_0, x).$$

Most natural choice:

Assume that we know some set $\mathcal N$ containing the solution x^* .

Then
$$f^* \ge \ell^*_T(\mathcal{N}) \stackrel{\text{def}}{=} \min_{x \in Q \cap \mathcal{N}} \ell_T(x).$$

At the same time,

$$f(x_T) - \ell_T^*(\mathcal{N}) \quad \leq \quad rac{\mu(1-\gamma)^T}{1-(1-\gamma)^T} \max_{x \in \mathcal{Q}} \bigcap_{\mathcal{N}} eta_d(x_0, x).$$

Most natural choice:

$$\mathcal{N} = \{x : \beta_d(x_0, x) \leq D\}.$$

Assume that we know some set $\mathcal N$ containing the solution x^* .

Then
$$f^* \ge \ell_T^*(\mathcal{N}) \stackrel{\text{def}}{=} \min_{x \in \mathcal{Q} \cap \mathcal{N}} \ell_T(x).$$

At the same time,

$$f(x_T) - \ell_T^*(\mathcal{N}) \quad \leq \quad rac{\mu(1-\gamma)^T}{1-(1-\gamma)^T} \max_{x \in \mathcal{Q}} \bigcap_{\mathcal{N}} eta_d(x_0, x).$$

Most natural choice:

$$\mathcal{N} = \{x: \beta_d(x_0, x) \leq D\}.$$

NB:

Assume that we know some set $\mathcal N$ containing the solution x^* .

Then
$$f^* \ge \ell_T^*(\mathcal{N}) \stackrel{\text{def}}{=} \min_{x \in \mathcal{Q} \cap \mathcal{N}} \ell_T(x).$$

At the same time,

$$f(x_T) - \ell_T^*(\mathcal{N}) \quad \leq \quad rac{\mu(1-\gamma)^T}{1-(1-\gamma)^T} \max_{x \in \mathcal{Q}} \bigcap_{\mathcal{N}} \beta_d(x_0,x).$$

Most natural choice:

$$\mathcal{N} = \{x : \beta_d(x_0, x) \leq D\}.$$

NB: 1. In many situations, \mathcal{N} and D are explicitly known.

Assume that we know some set \mathcal{N} containing the solution x^* .

Then
$$f^* \ge \ell_T^*(\mathcal{N}) \stackrel{\text{def}}{=} \min_{x \in \mathcal{Q} \cap \mathcal{N}} \ell_T(x).$$

At the same time,

$$f(x_T) - \ell_T^*(\mathcal{N}) \quad \leq \quad rac{\mu(1-\gamma)^T}{1-(1-\gamma)^T} \max_{x \in \mathcal{Q}} \bigcap_{\mathcal{N}} eta_d(x_0, x).$$

Most natural choice:

$$\mathcal{N} = \{x : \beta_d(x_0, x) \leq D\}.$$

NB: 1. In many situations, \mathcal{N} and D are explicitly known.

2. The rate of convergence is not as good as for the Fast Gradient Methods.

Assume that we know some set \mathcal{N} containing the solution x^* .

Then
$$f^* \ge \ell^*_T(\mathcal{N}) \stackrel{\text{def}}{=} \min_{x \in Q \cap \mathcal{N}} \ell_T(x).$$

At the same time,

$$f(x_T) - \ell_T^*(\mathcal{N}) \quad \leq \quad rac{\mu(1-\gamma)^T}{1-(1-\gamma)^T} \max_{x \in \mathcal{Q}} \bigcap_{\mathcal{N}} eta_d(x_0, x).$$

Most natural choice:

$$\mathcal{N} = \{x: \beta_d(x_0, x) \leq D\}.$$

NB: 1. In many situations, \mathcal{N} and D are explicitly known.

2. The rate of convergence is not as good as for the Fast Gradient Methods.

However, the field of applications is much wider.

1. Strongly convex functions with Lipschitz-continuous gradient.

1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient.

Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$,

1. Strongly convex functions with Lipschitz-continuous gradient.

Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have

1. Strongly convex functions with Lipschitz-continuous gradient.

Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \preceq \nabla^2 f(x) \preceq LI$ for all $x \in \mathbb{R}^n$.

- 1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \preceq \nabla^2 f(x) \preceq LI$ for all $x \in \mathbb{R}^n$.
- 2. Bounded growth of the Hessian.

- 1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \preceq \nabla^2 f(x) \preceq LI$ for all $x \in \mathbb{R}^n$.
- **2.** Bounded growth of the Hessian. Let $\|\nabla^2 f(x)\| \leq L(1 + \|x\|_{(2)}^r)$.

- 1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \preceq \nabla^2 f(x) \preceq LI$ for all $x \in \mathbb{R}^n$.
- 2. Bounded growth of the Hessian. Let $\|\nabla^2 f(x)\| \le L(1 + \|x\|_{(2)}^r)$. Then for $d(x) = \frac{1}{r+2} \|x\|_{(2)}^{r+2} + \frac{1}{2} \|x\|_{(2)}^2$,

- 1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \prec \nabla^2 f(x) \prec LI$ for all $x \in \mathbb{R}^n$.
- **2.** <u>Bounded growth of the Hessian</u>. Let $\|\nabla^2 f(x)\| \leq L(1 + \|x\|_{(2)}^r)$.

Then for $d(x) = \frac{1}{r+2} ||x||_{(2)}^{r+2} + \frac{1}{2} ||x||_{(2)}^2$, function f satisfies RSC with L.

1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have

 $\mu I \preceq \nabla^2 f(x) \preceq LI$ for all $x \in \mathbb{R}^n$.

2. <u>Bounded growth of the Hessian</u>. Let $\|\nabla^2 f(x)\| \leq L(1 + \|x\|_{(2)}^r)$.

Then for $d(x) = \frac{1}{r+2} ||x||_{(2)}^{r+2} + \frac{1}{2} ||x||_{(2)}^2$, function f satisfies RSC with L.

3. Splitting the objective.

- 1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \prec \nabla^2 f(x) \prec LI$ for all $x \in \mathbb{R}^n$.
- **2.** <u>Bounded growth of the Hessian</u>. Let $\|\nabla^2 f(x)\| \le L(1 + \|x\|_{(2)}^r)$. Then for $d(x) = \frac{1}{r+2} \|x\|_{(2)}^{r+2} + \frac{1}{2} \|x\|_{(2)}^2$, function f satisfies RSC with L.
- **3.** Splitting the objective. Let F(x)

- 1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \prec \nabla^2 f(x) \prec LI$ for all $x \in \mathbb{R}^n$.
- 2. Bounded growth of the Hessian. Let $\|\nabla^2 f(x)\| \le L(1+\|x\|_{(2)}^r)$.

Then for $d(x) = \frac{1}{r+2} ||x||_{(2)}^{r+2} + \frac{1}{2} ||x||_{(2)}^2$, function *f* satisfies RSC with *L*.

3. <u>Splitting the objective</u>. Let $F(x) = f(x) + \psi(x)$

- 1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \preceq \nabla^2 f(x) \preceq LI$ for all $x \in \mathbb{R}^n$.
- **2.** <u>Bounded growth of the Hessian</u>. Let $\|\nabla^2 f(x)\| \le L(1 + \|x\|_{(2)}^r)$. Then for $d(x) = \frac{1}{r+2} \|x\|_{(2)}^{r+2} + \frac{1}{2} \|x\|_{(2)}^2$, function f satisfies RSC with L.
- **3.** Splitting the objective. Let $F(x) = f(x) + \psi(x)$ with simple $\psi(\cdot)$

- 1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \prec \nabla^2 f(x) \prec LI$ for all $x \in \mathbb{R}^n$.
- 2. Bounded growth of the Hessian. Let $\|\nabla^2 f(x)\| \le L(1+\|x\|_{(2)}^r)$.

Then for $d(x) = \frac{1}{r+2} ||x||_{(2)}^{r+2} + \frac{1}{2} ||x||_{(2)}^2$, function *f* satisfies RSC with *L*.

3. <u>Splitting the objective</u>. Let $F(x) = f(x) + \psi(x)$ with simple $\psi(\cdot)$ and $\nabla^2 f(x) \preceq \gamma \nabla^2 \psi(x)$.

- 1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \prec \nabla^2 f(x) \prec LI$ for all $x \in \mathbb{R}^n$.
- **2.** <u>Bounded growth of the Hessian</u>. Let $\|\nabla^2 f(x)\| \le L(1 + \|x\|_{(2)}^r)$. Then for $d(x) = \frac{1}{r+2} \|x\|_{(2)}^{r+2} + \frac{1}{2} \|x\|_{(2)}^2$, function f satisfies RSC with L.
- **3.** <u>Splitting the objective</u>. Let $F(x) = f(x) + \psi(x)$ with simple $\psi(\cdot)$ and $\nabla^2 f(x) \leq \gamma \nabla^2 \psi(x)$.

Then $\mu = 1$ and $L = 1 + \gamma$.

- 1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \prec \nabla^2 f(x) \prec LI$ for all $x \in \mathbb{R}^n$.
- 2. <u>Bounded growth of the Hessian</u>. Let $\|\nabla^2 f(x)\| \le L(1 + \|x\|_{(2)}^r)$. Then for $d(x) = \frac{1}{r+2} \|x\|_{(2)}^{r+2} + \frac{1}{2} \|x\|_{(2)}^2$, function f satisfies RSC with L.
- **3.** <u>Splitting the objective</u>. Let $F(x) = f(x) + \psi(x)$ with simple $\psi(\cdot)$ and $\nabla^2 f(x) \leq \gamma \nabla^2 \psi(x)$.

Then $\mu = 1$ and $L = 1 + \gamma$.

Compare: Fast inversion of Laplacians

- 1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \prec \nabla^2 f(x) \prec LI$ for all $x \in \mathbb{R}^n$.
- 2. <u>Bounded growth of the Hessian</u>. Let $\|\nabla^2 f(x)\| \le L(1 + \|x\|_{(2)}^r)$. Then for $d(x) = \frac{1}{r+2} \|x\|_{(2)}^{r+2} + \frac{1}{2} \|x\|_{(2)}^2$, function f satisfies RSC with L.
- **3.** <u>Splitting the objective</u>. Let $F(x) = f(x) + \psi(x)$ with simple $\psi(\cdot)$ and $\nabla^2 f(x) \preceq \gamma \nabla^2 \psi(x)$.

Then $\mu = 1$ and $L = 1 + \gamma$.

Compare: Fast inversion of Laplacians (Spilmann, Tao (2010), ...)

- 1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \prec \nabla^2 f(x) \prec LI$ for all $x \in \mathbb{R}^n$.
- 2. <u>Bounded growth of the Hessian</u>. Let $\|\nabla^2 f(x)\| \le L(1 + \|x\|_{(2)}^r)$. Then for $d(x) = \frac{1}{r+2} \|x\|_{(2)}^{r+2} + \frac{1}{2} \|x\|_{(2)}^2$, function f satisfies RSC with L.
- **3.** <u>Splitting the objective</u>. Let $F(x) = f(x) + \psi(x)$ with simple $\psi(\cdot)$ and $\nabla^2 f(x) \leq \gamma \nabla^2 \psi(x)$.

Then $\mu = 1$ and $L = 1 + \gamma$.

Compare: <u>Fast inversion of Laplacians</u> (Spilmann, Tao (2010), ...) For solving the system Ax = b

- 1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \prec \nabla^2 f(x) \prec LI$ for all $x \in \mathbb{R}^n$.
- 2. <u>Bounded growth of the Hessian</u>. Let $\|\nabla^2 f(x)\| \le L(1 + \|x\|_{(2)}^r)$. Then for $d(x) = \frac{1}{r+2} \|x\|_{(2)}^{r+2} + \frac{1}{2} \|x\|_{(2)}^2$, function f satisfies RSC with L.
- **3.** <u>Splitting the objective</u>. Let $F(x) = f(x) + \psi(x)$ with simple $\psi(\cdot)$ and $\nabla^2 f(x) \preceq \gamma \nabla^2 \psi(x)$.

Then $\mu = 1$ and $L = 1 + \gamma$.

Compare: <u>Fast inversion of Laplacians</u> (Spilmann, Tao (2010), ...) For solving the system Ax = b with Laplacian $A \succeq 0$,

- 1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \prec \nabla^2 f(x) \prec LI$ for all $x \in \mathbb{R}^n$.
- 2. <u>Bounded growth of the Hessian</u>. Let $\|\nabla^2 f(x)\| \le L(1 + \|x\|_{(2)}^r)$. Then for $d(x) = \frac{1}{r+2} \|x\|_{(2)}^{r+2} + \frac{1}{2} \|x\|_{(2)}^2$, function f satisfies RSC with L.
- **3.** <u>Splitting the objective</u>. Let $F(x) = f(x) + \psi(x)$ with simple $\psi(\cdot)$ and $\nabla^2 f(x) \preceq \gamma \nabla^2 \psi(x)$.

Then $\mu = 1$ and $L = 1 + \gamma$.

Compare: Fast inversion of Laplacians (Spilmann, Tao (2010), ...) For solving the system Ax = b with Laplacian $A \succeq 0$, we represent

$$\langle Ax, x \rangle = \sum_{i=1}^{m} \langle a_i, x \rangle^2$$

- 1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \prec \nabla^2 f(x) \prec LI$ for all $x \in \mathbb{R}^n$.
- 2. <u>Bounded growth of the Hessian</u>. Let $\|\nabla^2 f(x)\| \le L(1 + \|x\|_{(2)}^r)$. Then for $d(x) = \frac{1}{r+2} \|x\|_{(2)}^{r+2} + \frac{1}{2} \|x\|_{(2)}^2$, function f satisfies RSC with L.
- **3.** <u>Splitting the objective</u>. Let $F(x) = f(x) + \psi(x)$ with simple $\psi(\cdot)$ and $\nabla^2 f(x) \preceq \gamma \nabla^2 \psi(x)$.

Then $\mu = 1$ and $L = 1 + \gamma$.

Compare: <u>Fast inversion of Laplacians</u> (Spilmann, Tao (2010), ...) For solving the system Ax = b with Laplacian $A \succeq 0$, we represent

$$\langle Ax, x \rangle = \sum_{i=1}^{m} \langle a_i, x \rangle^2 = \sum_{i \in T} \langle a_i, x \rangle^2 + \sum_{i \notin T} \langle a_i, x \rangle^2$$

- 1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \prec \nabla^2 f(x) \prec LI$ for all $x \in \mathbb{R}^n$.
- 2. <u>Bounded growth of the Hessian</u>. Let $\|\nabla^2 f(x)\| \le L(1 + \|x\|_{(2)}^r)$. Then for $d(x) = \frac{1}{r+2} \|x\|_{(2)}^{r+2} + \frac{1}{2} \|x\|_{(2)}^2$, function f satisfies RSC with L.
- **3.** <u>Splitting the objective</u>. Let $F(x) = f(x) + \psi(x)$ with simple $\psi(\cdot)$ and $\nabla^2 f(x) \leq \gamma \nabla^2 \psi(x)$.

Then $\mu = 1$ and $L = 1 + \gamma$.

Compare: <u>Fast inversion of Laplacians</u> (Spilmann, Tao (2010), ...) For solving the system Ax = b with Laplacian $A \succeq 0$, we represent

$$\langle Ax, x \rangle = \sum_{i=1}^{m} \langle a_i, x \rangle^2 = \sum_{i \in T} \langle a_i, x \rangle^2 + \sum_{i \notin T} \langle a_i, x \rangle^2 \stackrel{\text{def}}{=} B + C,$$

- 1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \prec \nabla^2 f(x) \prec LI$ for all $x \in \mathbb{R}^n$.
- 2. <u>Bounded growth of the Hessian</u>. Let $\|\nabla^2 f(x)\| \le L(1 + \|x\|_{(2)}^r)$. Then for $d(x) = \frac{1}{r+2} \|x\|_{(2)}^{r+2} + \frac{1}{2} \|x\|_{(2)}^2$, function f satisfies RSC with L.
- **3.** <u>Splitting the objective</u>. Let $F(x) = f(x) + \psi(x)$ with simple $\psi(\cdot)$ and $\nabla^2 f(x) \preceq \gamma \nabla^2 \psi(x)$.

Then $\mu = 1$ and $L = 1 + \gamma$.

Compare: <u>Fast inversion of Laplacians</u> (Spilmann, Tao (2010), ...) For solving the system Ax = b with Laplacian $A \succeq 0$, we represent

$$\langle Ax, x \rangle = \sum_{i=1}^{m} \langle a_i, x \rangle^2 = \sum_{i \in T} \langle a_i, x \rangle^2 + \sum_{i \notin T} \langle a_i, x \rangle^2 \stackrel{\text{def}}{=} B + C,$$

with $C \preceq LB$,

- 1. <u>Strongly convex functions</u> with Lipschitz-continuous gradient. Indeed, choosing $d(x) = \frac{1}{2} ||x||_{(2)}^2$, we have $\mu I \prec \nabla^2 f(x) \prec LI$ for all $x \in \mathbb{R}^n$.
- 2. <u>Bounded growth of the Hessian</u>. Let $\|\nabla^2 f(x)\| \le L(1 + \|x\|_{(2)}^r)$. Then for $d(x) = \frac{1}{r+2} \|x\|_{(2)}^{r+2} + \frac{1}{2} \|x\|_{(2)}^2$, function f satisfies RSC with L.
- **3.** <u>Splitting the objective</u>. Let $F(x) = f(x) + \psi(x)$ with simple $\psi(\cdot)$ and $\nabla^2 f(x) \preceq \gamma \nabla^2 \psi(x)$.

Then $\mu = 1$ and $L = 1 + \gamma$.

Compare: Fast inversion of Laplacians (Spilmann, Tao (2010), ...) For solving the system Ax = b with Laplacian $A \succeq 0$, we represent

$$\langle Ax, x \rangle = \sum_{i=1}^{m} \langle a_i, x \rangle^2 = \sum_{i \in T} \langle a_i, x \rangle^2 + \sum_{i \notin T} \langle a_i, x \rangle^2 \stackrel{\text{def}}{=} B + C,$$

with $C \leq LB$, and use B as a preconditioner.

Example: Third-order method

Example: Third-order method

Problem:
Problem:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$,

where function $f \in \mathbb{C}^{3,1}_{L}(\mathbb{R}^n)$ is convex.

Problem: $\min_{x \in \mathbb{R}^n} f(x)$,

where function $f \in \mathbb{C}^{3,1}_L(\mathbb{R}^n)$ is convex.

Consider the regularized Taylor polynomial of degree three:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$,

where function $f \in \mathbb{C}^{3,1}_L(\mathbb{R}^n)$ is convex.

Consider the regularized Taylor polynomial of degree three:

$$\begin{split} \Omega_{\bar{x},H}(x) &= f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle + \frac{1}{2} \langle \nabla^2 f(\bar{x})(x - \bar{x}), x - \bar{x} \rangle \\ &+ \frac{1}{6} D^3 f(\bar{x}) [y - \bar{x}]^3 + \frac{H}{24} \| x - \bar{x} \|_{(2)}^4. \end{split}$$

Problem: $\min_{x \in \mathbb{R}^n} f(x)$,

where function $f \in \mathbb{C}^{3,1}_L(\mathbb{R}^n)$ is convex.

Consider the regularized Taylor polynomial of degree three:

$$\begin{split} \Omega_{\bar{x},H}(x) &= f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle + \frac{1}{2} \langle \nabla^2 f(\bar{x})(x - \bar{x}), x - \bar{x} \rangle \\ &+ \frac{1}{6} D^3 f(\bar{x}) [y - \bar{x}]^3 + \frac{H}{24} \| x - \bar{x} \|_{(2)}^4. \end{split}$$

Theorem (N.2018).

Problem: $\min_{x \in \mathbb{R}^n} f(x)$,

where function $f \in \mathbb{C}^{3,1}_L(\mathbb{R}^n)$ is convex.

Consider the regularized Taylor polynomial of degree three:

$$\begin{split} \Omega_{\bar{x},H}(x) &= f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle + \frac{1}{2} \langle \nabla^2 f(\bar{x})(x - \bar{x}), x - \bar{x} \rangle \\ &+ \frac{1}{6} D^3 f(\bar{x}) [y - \bar{x}]^3 + \frac{H}{24} \|x - \bar{x}\|_{(2)}^4. \end{split}$$

Theorem (N.2018). If $H \ge 3L$ then $\Omega_{\bar{x},H}(\cdot)$ is a convex polynomial.

Problem: $\min_{x \in \mathbb{R}^n} f(x)$,

where function $f \in \mathbb{C}^{3,1}_L(\mathbb{R}^n)$ is convex.

Consider the regularized Taylor polynomial of degree three:

$$\begin{split} \Omega_{\bar{x},H}(x) &= f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle + \frac{1}{2} \langle \nabla^2 f(\bar{x})(x - \bar{x}), x - \bar{x} \rangle \\ &+ \frac{1}{6} D^3 f(\bar{x}) [y - \bar{x}]^3 + \frac{H}{24} \| x - \bar{x} \|_{(2)}^4. \end{split}$$

Theorem (N.2018). If $H \ge 3L$ then $\Omega_{\bar{x},H}(\cdot)$ is a convex polynomial. Main question:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$,

where function $f \in \mathbb{C}^{3,1}_L(\mathbb{R}^n)$ is convex.

Consider the regularized Taylor polynomial of degree three:

$$\begin{split} \Omega_{\bar{x},H}(x) &= f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle + \frac{1}{2} \langle \nabla^2 f(\bar{x})(x - \bar{x}), x - \bar{x} \rangle \\ &+ \frac{1}{6} D^3 f(\bar{x}) [y - \bar{x}]^3 + \frac{H}{24} \| x - \bar{x} \|_{(2)}^4. \end{split}$$

Theorem (N.2018). If $H \ge 3L$ then $\Omega_{\bar{x},H}(\cdot)$ is a convex polynomial. **Main question:** How to minimize it?

Problem: $\min_{x \in \mathbb{R}^n} f(x)$,

where function $f \in \mathbb{C}^{3,1}_L(\mathbb{R}^n)$ is convex.

Consider the regularized Taylor polynomial of degree three:

$$\begin{split} \Omega_{\bar{x},H}(x) &= f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle + \frac{1}{2} \langle \nabla^2 f(\bar{x})(x - \bar{x}), x - \bar{x} \rangle \\ &+ \frac{1}{6} D^3 f(\bar{x}) [y - \bar{x}]^3 + \frac{H}{24} \|x - \bar{x}\|_{(2)}^4. \end{split}$$

Theorem (N.2018). If $H \ge 3L$ then $\Omega_{\bar{x},H}(\cdot)$ is a convex polynomial. **Main question:** How to minimize it? **Answer:**

Problem: $\min_{x \in \mathbb{R}^n} f(x)$,

where function $f \in \mathbb{C}^{3,1}_L(\mathbb{R}^n)$ is convex.

Consider the regularized Taylor polynomial of degree three:

$$\begin{split} \Omega_{\bar{x},H}(x) &= f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle + \frac{1}{2} \langle \nabla^2 f(\bar{x})(x - \bar{x}), x - \bar{x} \rangle \\ &+ \frac{1}{6} D^3 f(\bar{x}) [y - \bar{x}]^3 + \frac{H}{24} \|x - \bar{x}\|_{(2)}^4. \end{split}$$

Theorem (N.2018). If $H \ge 3L$ then $\Omega_{\bar{x},H}(\cdot)$ is a convex polynomial. **Main question:** How to minimize it?

Problem: $\min_{x \in \mathbb{R}^n} f(x)$,

where function $f \in \mathbb{C}^{3,1}_L(\mathbb{R}^n)$ is convex.

Consider the regularized Taylor polynomial of degree three:

$$\begin{split} \Omega_{\bar{x},H}(x) &= f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle + \frac{1}{2} \langle \nabla^2 f(\bar{x})(x - \bar{x}), x - \bar{x} \rangle \\ &+ \frac{1}{6} D^3 f(\bar{x}) [y - \bar{x}]^3 + \frac{H}{24} \| x - \bar{x} \|_{(2)}^4. \end{split}$$

Theorem (N.2018). If $H \ge 3L$ then $\Omega_{\bar{x},H}(\cdot)$ is a convex polynomial. **Main question:** How to minimize it?

Answer: by the Gradient Method based on RSC.

Let $\tau = \sqrt{\frac{H}{3L}} > 1$.

Problem: $\min_{x \in \mathbb{R}^n} f(x)$,

where function $f \in \mathbb{C}^{3,1}_L(\mathbb{R}^n)$ is convex.

Consider the regularized Taylor polynomial of degree three:

$$\begin{split} \Omega_{\bar{x},H}(x) &= f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle + \frac{1}{2} \langle \nabla^2 f(\bar{x})(x - \bar{x}), x - \bar{x} \rangle \\ &+ \frac{1}{6} D^3 f(\bar{x}) [y - \bar{x}]^3 + \frac{H}{24} \| x - \bar{x} \|_{(2)}^4. \end{split}$$

Theorem (N.2018). If $H \ge 3L$ then $\Omega_{\bar{x},H}(\cdot)$ is a convex polynomial. **Main question:** How to minimize it?

Let
$$\tau = \sqrt{\frac{H}{3L}} > 1$$
. Define

$$d_{\bar{x},\tau}(x) = \frac{1}{2} \left(1 - \frac{1}{\tau}\right) \langle \nabla^2 f(\bar{x})(x - \bar{x}), x - \bar{x} \rangle + \frac{\tau(\tau - 1)L}{8} \|x - \bar{x}\|_{(2)}^4.$$

Problem: $\min_{x \in \mathbb{R}^n} f(x)$,

where function $f \in \mathbb{C}^{3,1}_L(\mathbb{R}^n)$ is convex.

Consider the regularized Taylor polynomial of degree three:

$$\begin{split} \Omega_{\bar{x},H}(x) &= f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle + \frac{1}{2} \langle \nabla^2 f(\bar{x})(x - \bar{x}), x - \bar{x} \rangle \\ &+ \frac{1}{6} D^3 f(\bar{x}) [y - \bar{x}]^3 + \frac{H}{24} \| x - \bar{x} \|_{(2)}^4. \end{split}$$

Theorem (N.2018). If $H \ge 3L$ then $\Omega_{\bar{x},H}(\cdot)$ is a convex polynomial. **Main question:** How to minimize it?

Let
$$\tau = \sqrt{\frac{H}{3L}} > 1$$
. Define
 $d_{\bar{x},\tau}(x) = \frac{1}{2} \left(1 - \frac{1}{\tau}\right) \langle \nabla^2 f(\bar{x})(x - \bar{x}), x - \bar{x} \rangle + \frac{\tau(\tau - 1)L}{8} \|x - \bar{x}\|_{(2)}^4.$
Then $\nabla^2 d_{\bar{x},\tau}(x) \preceq \nabla \Omega_{\bar{x},H}(x) \preceq \frac{\tau + 1}{\tau - 1} \nabla^2 d_{\bar{x},\tau}(x).$

Problem: $\min_{x \in \mathbb{R}^n} f(x)$,

where function $f \in \mathbb{C}^{3,1}_L(\mathbb{R}^n)$ is convex.

Consider the regularized Taylor polynomial of degree three:

$$\begin{split} \Omega_{\bar{x},H}(x) &= f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle + \frac{1}{2} \langle \nabla^2 f(\bar{x})(x - \bar{x}), x - \bar{x} \rangle \\ &+ \frac{1}{6} D^3 f(\bar{x}) [y - \bar{x}]^3 + \frac{H}{24} \| x - \bar{x} \|_{(2)}^4. \end{split}$$

Theorem (N.2018). If $H \ge 3L$ then $\Omega_{\bar{x},H}(\cdot)$ is a convex polynomial. **Main question:** How to minimize it?

Let
$$\tau = \sqrt{\frac{H}{3L}} > 1$$
. Define
 $d_{\bar{x},\tau}(x) = \frac{1}{2} \left(1 - \frac{1}{\tau}\right) \langle \nabla^2 f(\bar{x})(x - \bar{x}), x - \bar{x} \rangle + \frac{\tau(\tau - 1)L}{8} \|x - \bar{x}\|_{(2)}^4.$
Then $\nabla^2 d_{\bar{x},\tau}(x) \preceq \nabla \Omega_{\bar{x},H}(x) \preceq \frac{\tau + 1}{\tau - 1} \nabla^2 d_{\bar{x},\tau}(x).$
Choosing $\tau = 2$

Problem: $\min_{x \in \mathbb{R}^n} f(x)$,

where function $f \in \mathbb{C}^{3,1}_L(\mathbb{R}^n)$ is convex.

Consider the regularized Taylor polynomial of degree three:

$$\begin{split} \Omega_{\bar{x},H}(x) &= f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle + \frac{1}{2} \langle \nabla^2 f(\bar{x})(x - \bar{x}), x - \bar{x} \rangle \\ &+ \frac{1}{6} D^3 f(\bar{x}) [y - \bar{x}]^3 + \frac{H}{24} \| x - \bar{x} \|_{(2)}^4. \end{split}$$

Theorem (N.2018). If $H \ge 3L$ then $\Omega_{\bar{x},H}(\cdot)$ is a convex polynomial. **Main question:** How to minimize it?

Let
$$\tau = \sqrt{\frac{H}{3L}} > 1$$
. Define
 $d_{\bar{x},\tau}(x) = \frac{1}{2} \left(1 - \frac{1}{\tau}\right) \langle \nabla^2 f(\bar{x})(x - \bar{x}), x - \bar{x} \rangle + \frac{\tau(\tau - 1)L}{8} \|x - \bar{x}\|_{(2)}^4.$
Then $\nabla^2 d_{\bar{x},\tau}(x) \preceq \nabla \Omega_{\bar{x},H}(x) \preceq \frac{\tau + 1}{\tau - 1} \nabla^2 d_{\bar{x},\tau}(x).$
Choosing $\tau = 2$ (this is $H = 12L$),

Problem: $\min_{x \in \mathbb{R}^n} f(x)$,

where function $f \in \mathbb{C}^{3,1}_L(\mathbb{R}^n)$ is convex.

Consider the regularized Taylor polynomial of degree three:

$$\begin{split} \Omega_{\bar{x},H}(x) &= f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle + \frac{1}{2} \langle \nabla^2 f(\bar{x})(x - \bar{x}), x - \bar{x} \rangle \\ &+ \frac{1}{6} D^3 f(\bar{x}) [y - \bar{x}]^3 + \frac{H}{24} \| x - \bar{x} \|_{(2)}^4. \end{split}$$

Theorem (N.2018). If $H \ge 3L$ then $\Omega_{\bar{x},H}(\cdot)$ is a convex polynomial. **Main question:** How to minimize it?

Let
$$\tau = \sqrt{\frac{H}{3L}} > 1$$
. Define
 $d_{\bar{x},\tau}(x) = \frac{1}{2} \left(1 - \frac{1}{\tau}\right) \langle \nabla^2 f(\bar{x})(x - \bar{x}), x - \bar{x} \rangle + \frac{\tau(\tau - 1)L}{8} \|x - \bar{x}\|_{(2)}^4.$
Then $\nabla^2 d_{\bar{x},\tau}(x) \preceq \nabla \Omega_{\bar{x},H}(x) \preceq \frac{\tau + 1}{\tau - 1} \nabla^2 d_{\bar{x},\tau}(x).$
Choosing $\tau = 2$ (this is $H = 12L$), we have $\gamma = \frac{1}{3}$.

Main diffculties:

Main diffculties:

► The subgradients are discontinuous.

Main diffculties:

- The subgradients are discontinuous.
- The norm of subgradient does not describe well the growth of the function.

Main diffculties:

- The subgradients are discontinuous.
- The norm of subgradient does not describe well the growth of the function.

Definition.

Main diffculties:

- The subgradients are discontinuous.
- The norm of subgradient does not describe well the growth of the function.

Definition.

Let function φ be strictly increasing,

Main diffculties:

- The subgradients are discontinuous.
- The norm of subgradient does not describe well the growth of the function.

Definition.

Let function φ be strictly increasing, $0 \in \operatorname{dom} \varphi \subseteq \mathbb{R}$, and $\varphi(0) = 0$.

Main diffculties:

- The subgradients are discontinuous.
- The norm of subgradient does not describe well the growth of the function.

Definition.

Let function φ be strictly increasing, $0 \in \operatorname{dom} \varphi \subseteq \mathbb{R}$, and $\varphi(0) = 0$. We say that f has a *Bounded Growth* with respect to $d(\cdot)$ and $\varphi(\cdot)$

Main diffculties:

- The subgradients are discontinuous.
- The norm of subgradient does not describe well the growth of the function.

Definition.

Let function φ be strictly increasing, $0 \in \operatorname{dom} \varphi \subseteq \mathbb{R}$, and $\varphi(0) = 0$. We say that f has a *Bounded Growth* with respect to $d(\cdot)$ and $\varphi(\cdot)$ if for any $x, y \in \operatorname{dom} f$

Main diffculties:

- The subgradients are discontinuous.
- The norm of subgradient does not describe well the growth of the function.

Definition.

Let function φ be strictly increasing, $0 \in \operatorname{dom} \varphi \subseteq \mathbb{R}$, and $\varphi(0) = 0$. We say that f has a *Bounded Growth* with respect to $d(\cdot)$ and $\varphi(\cdot)$ if for any $x, y \in \operatorname{dom} f$ and $g_f \in \partial f(x)$,

Main diffculties:

- The subgradients are discontinuous.
- The norm of subgradient does not describe well the growth of the function.

Definition.

Let function φ be strictly increasing, $0 \in \operatorname{dom} \varphi \subseteq \mathbb{R}$, and $\varphi(0) = 0$. We say that f has a *Bounded Growth* with respect to $d(\cdot)$ and $\varphi(\cdot)$ if for any $x, y \in \operatorname{dom} f$ and $g_f \in \partial f(x)$, we have

Main diffculties:

- The subgradients are discontinuous.
- The norm of subgradient does not describe well the growth of the function.

Definition.

Let function φ be strictly increasing, $0 \in \operatorname{dom} \varphi \subseteq \mathbb{R}$, and $\varphi(0) = 0$. We say that f has a *Bounded Growth* with respect to $d(\cdot)$ and $\varphi(\cdot)$ if for any $x, y \in \operatorname{dom} f$ and $g_f \in \partial f(x)$, we have

$$\langle g_f, x-y \rangle \leq \varphi^{-1}(\beta_d(x,y)),$$

Main diffculties:

- The subgradients are discontinuous.
- The norm of subgradient does not describe well the growth of the function.

Definition.

Let function φ be strictly increasing, $0 \in \operatorname{dom} \varphi \subseteq \mathbb{R}$, and $\varphi(0) = 0$. We say that f has a *Bounded Growth* with respect to $d(\cdot)$ and $\varphi(\cdot)$ if for any $x, y \in \operatorname{dom} f$ and $g_f \in \partial f(x)$, we have

$$\langle g_f, x-y \rangle \leq \varphi^{-1}(\beta_d(x,y)),$$

where $\varphi^{-1}(\cdot)$ is the inverse of function $\varphi(\cdot)$,

Main diffculties:

- The subgradients are discontinuous.
- The norm of subgradient does not describe well the growth of the function.

Definition.

Let function φ be strictly increasing, $0 \in \operatorname{dom} \varphi \subseteq \mathbb{R}$, and $\varphi(0) = 0$. We say that f has a *Bounded Growth* with respect to $d(\cdot)$ and $\varphi(\cdot)$ if for any $x, y \in \operatorname{dom} f$ and $g_f \in \partial f(x)$, we have

$$\langle g_f, x-y \rangle \leq \varphi^{-1}(\beta_d(x,y)),$$

where $\varphi^{-1}(\cdot)$ is the inverse of function $\varphi(\cdot)$, and

$$eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle, \quad x,y \in \operatorname{dom} d.$$

1. Functions with bounded subgradients.

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

$$\beta_d(x,y) = d(y) - d(x) - \langle \nabla d(x), y - x \rangle$$

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

 $eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

 $eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$

Then for any function with bounded subgradients:
1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

$$eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M$ for all $g \in \partial f(x)$ and all $x \in \operatorname{dom} f$,

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

 $eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M$ for all $g \in \partial f(x)$ and all $x \in \operatorname{dom} f$,

we have $\langle g, x - y \rangle \leq M \|x - y\|$

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

 $eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M$ for all $g \in \partial f(x)$ and all $x \in \operatorname{dom} f$,

we have $\langle g, x - y \rangle \leq M ||x - y|| \leq M \sqrt{2\beta_d(x, y)}$.

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

$$eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M$ for all $g \in \partial f(x)$ and all $x \in \operatorname{dom} f$, we have $\langle g, x - y \rangle \leq M \|x - y\| \leq M \sqrt{2\beta_d(x, y)}$. Thus, we can take $\varphi(\tau) = \frac{\tau^2}{2M^2}$.

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

$$eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M$ for all $g \in \partial f(x)$ and all $x \in \operatorname{dom} f$, we have $\langle g, x - y \rangle \leq M \|x - y\| \leq M \sqrt{2\beta_d(x, y)}$. Thus, we can take $\varphi(\tau) = \frac{\tau^2}{2M^2}$.

2. Local Lipschitz condition.

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

$$eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M \text{ for all } g \in \partial f(x) \text{ and all } x \in \operatorname{dom} f,$ we have $\langle g, x - y \rangle \leq M \|x - y\| \leq M \sqrt{2\beta_d(x, y)}.$ Thus, we can take $\varphi(\tau) = \frac{\tau^2}{2M^2}.$

2. Local Lipschitz condition. Let $d(\cdot)$ be a *self-concordant function*:

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

 $eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M$ for all $g \in \partial f(x)$ and all $x \in \text{dom } f$, we have $\langle g, x - y \rangle \leq M \|x - y\| \leq M \sqrt{2\beta_d(x, y)}$. Thus, we can take $\varphi(\tau) = \frac{\tau^2}{2M^2}$.

2. Local Lipschitz condition. Let $d(\cdot)$ be a self-concordant function: $D^3d(x)[h]^3 \leq 2\langle \nabla^2 d(x)h,h \rangle^{1/2}$ for all $x \in \text{dom } d$ and $h \in \mathbb{R}^n$.

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

 $eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M$ for all $g \in \partial f(x)$ and all $x \in \text{dom } f$, we have $\langle g, x - y \rangle \leq M \|x - y\| \leq M \sqrt{2\beta_d(x, y)}$. Thus, we can take $\varphi(\tau) = \frac{\tau^2}{2M^2}$.

2. Local Lipschitz condition. Let $d(\cdot)$ be a self-concordant function: $D^3 d(x)[h]^3 \leq 2\langle \nabla^2 d(x)h,h \rangle^{1/2}$ for all $x \in \text{dom } d$ and $h \in \mathbb{R}^n$. Local norms:

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

 $eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M \text{ for all } g \in \partial f(x) \text{ and all } x \in \operatorname{dom} f,$ we have $\langle g, x - y \rangle \leq M \|x - y\| \leq M \sqrt{2\beta_d(x, y)}.$ Thus, we can take $\varphi(\tau) = \frac{\tau^2}{2M^2}.$

 Local Lipschitz condition. Let d(·) be a self-concordant function: D³d(x)[h]³ ≤ 2⟨∇²d(x)h, h)⟩^{1/2} for all x ∈ dom d and h ∈ ℝⁿ.

 Local norms: ||h||_x = ⟨∇²f(x)h, h⟩^{1/2},

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

 $eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M \text{ for all } g \in \partial f(x) \text{ and all } x \in \text{dom } f,$ we have $\langle g, x - y \rangle \leq M \|x - y\| \leq M \sqrt{2\beta_d(x, y)}.$ Thus, we can take $\varphi(\tau) = \frac{\tau^2}{2M^2}.$

2. Local Lipschitz condition. Let $d(\cdot)$ be a *self-concordant function*: $D^3 d(x)[h]^3 \leq 2\langle \nabla^2 d(x)h, h \rangle^{1/2}$ for all $x \in \text{dom } d$ and $h \in \mathbb{R}^n$. Local norms: $\|h\|_x = \langle \nabla^2 f(x)h, h \rangle^{1/2}$, $\|g\|_x^* = \langle g, [\nabla^2 f(x)]^{-1}g \rangle^{1/2}$.

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

 $eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M \text{ for all } g \in \partial f(x) \text{ and all } x \in \operatorname{dom} f,$ we have $\langle g, x - y \rangle \leq M \|x - y\| \leq M \sqrt{2\beta_d(x, y)}.$ Thus, we can take $\varphi(\tau) = \frac{\tau^2}{2M^2}.$

2. Local Lipschitz condition. Let $d(\cdot)$ be a self-concordant function: $D^3 d(x)[h]^3 \leq 2\langle \nabla^2 d(x)h,h \rangle^{1/2}$ for all $x \in \text{dom } d$ and $h \in \mathbb{R}^n$. Local norms: $\|h\|_x = \langle \nabla^2 f(x)h,h \rangle^{1/2}$, $\|g\|_x^* = \langle g, [\nabla^2 f(x)]^{-1}g \rangle^{1/2}$. Def.

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

 $eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M$ for all $g \in \partial f(x)$ and all $x \in \text{dom } f$, we have $\langle g, x - y \rangle \leq M \|x - y\| \leq M \sqrt{2\beta_d(x, y)}$. Thus, we can take $\varphi(\tau) = \frac{\tau^2}{2M^2}$.

 Local Lipschitz condition. Let d(·) be a self-concordant function: D³d(x)[h]³ ≤ 2⟨∇²d(x)h, h)⟩^{1/2} for all x ∈ dom d and h ∈ ℝⁿ.

 Local norms: ||h||_x = ⟨∇²f(x)h, h⟩^{1/2}, ||g||^{*}_x = ⟨g, [∇²f(x)]⁻¹g⟩^{1/2}.

 Def. We call f Locally Lipschitz Continuous

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

 $eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M \text{ for all } g \in \partial f(x) \text{ and all } x \in \operatorname{dom} f,$ we have $\langle g, x - y \rangle \leq M \|x - y\| \leq M \sqrt{2\beta_d(x, y)}.$ Thus, we can take $\varphi(\tau) = \frac{\tau^2}{2M^2}.$

 Local Lipschitz condition. Let d(·) be a self-concordant function: D³d(x)[h]³ ≤ 2⟨∇²d(x)h, h)⟩^{1/2} for all x ∈ dom d and h ∈ ℝⁿ.

 Local norms: ||h||_x = ⟨∇²f(x)h, h⟩^{1/2}, ||g||^{*}_x = ⟨g, [∇²f(x)]⁻¹g⟩^{1/2}.

 Def. We call f Locally Lipschitz Continuous (with respect to d)

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

 $eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M \text{ for all } g \in \partial f(x) \text{ and all } x \in \operatorname{dom} f,$ we have $\langle g, x - y \rangle \leq M \|x - y\| \leq M \sqrt{2\beta_d(x, y)}.$ Thus, we can take $\varphi(\tau) = \frac{\tau^2}{2M^2}.$

 Local Lipschitz condition. Let d(·) be a self-concordant function: D³d(x)[h]³ ≤ 2⟨∇²d(x)h, h)⟩^{1/2} for all x ∈ dom d and h ∈ ℝⁿ.

 Local norms: ||h||_x = ⟨∇²f(x)h, h⟩^{1/2}, ||g||^{*}_x = ⟨g, [∇²f(x)]⁻¹g⟩^{1/2}.

 Def. We call f Locally Lipschitz Continuous (with respect to d) if ||g||^{*}_x ≤ M for all g ∈ ∂f(x),

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

 $eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M \text{ for all } g \in \partial f(x) \text{ and all } x \in \operatorname{dom} f,$ we have $\langle g, x - y \rangle \leq M \|x - y\| \leq M \sqrt{2\beta_d(x, y)}.$ Thus, we can take $\varphi(\tau) = \frac{\tau^2}{2M^2}.$

 Local Lipschitz condition. Let d(·) be a self-concordant function: D³d(x)[h]³ ≤ 2⟨∇²d(x)h, h)⟩^{1/2} for all x ∈ dom d and h ∈ ℝⁿ.

 Local norms: ||h||_x = ⟨∇²f(x)h, h⟩^{1/2}, ||g||^{*}_x = ⟨g, [∇²f(x)]⁻¹g⟩^{1/2}.

 Def. We call f Locally Lipschitz Continuous (with respect to d) if ||g||^{*}_x ≤ M for all g ∈ ∂f(x), x ∈ dom f.

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

 $eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M \text{ for all } g \in \partial f(x) \text{ and all } x \in \operatorname{dom} f,$ we have $\langle g, x - y \rangle \leq M \|x - y\| \leq M \sqrt{2\beta_d(x, y)}.$ Thus, we can take $\varphi(\tau) = \frac{\tau^2}{2M^2}.$

 Local Lipschitz condition. Let d(·) be a self-concordant function: D³d(x)[h]³ ≤ 2⟨∇²d(x)h, h)⟩^{1/2} for all x ∈ dom d and h ∈ ℝⁿ.

 Local norms: ||h||_x = ⟨∇²f(x)h, h⟩^{1/2}, ||g||^{*}_x = ⟨g, [∇²f(x)]⁻¹g⟩^{1/2}.

 Def. We call f Locally Lipschitz Continuous (with respect to d) if ||g||^{*}_x ≤ M for all g ∈ ∂f(x), x ∈ dom f.

Theorem:

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

 $eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M \text{ for all } g \in \partial f(x) \text{ and all } x \in \operatorname{dom} f,$ we have $\langle g, x - y \rangle \leq M \|x - y\| \leq M \sqrt{2\beta_d(x, y)}.$ Thus, we can take $\varphi(\tau) = \frac{\tau^2}{2M^2}.$

 Local Lipschitz condition. Let d(·) be a self-concordant function: D³d(x)[h]³ ≤ 2⟨∇²d(x)h, h)⟩^{1/2} for all x ∈ dom d and h ∈ ℝⁿ.

 Local norms: ||h||_x = ⟨∇²f(x)h, h⟩^{1/2}, ||g||_x^{*} = ⟨g, [∇²f(x)]⁻¹g⟩^{1/2}.

 Def. We call f Locally Lipschitz Continuous (with respect to d) if ||g||_x^{*} ≤ M for all g ∈ ∂f(x), x ∈ dom f.

Theorem: function f has Bounded Growth

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

 $eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M \text{ for all } g \in \partial f(x) \text{ and all } x \in \operatorname{dom} f,$ we have $\langle g, x - y \rangle \leq M \|x - y\| \leq M \sqrt{2\beta_d(x, y)}.$ Thus, we can take $\varphi(\tau) = \frac{\tau^2}{2M^2}.$

 Local Lipschitz condition. Let d(·) be a self-concordant function: D³d(x)[h]³ ≤ 2⟨∇²d(x)h, h)⟩^{1/2} for all x ∈ dom d and h ∈ ℝⁿ.

 Local norms: ||h||_x = ⟨∇²f(x)h, h⟩^{1/2}, ||g||^{*}_x = ⟨g, [∇²f(x)]⁻¹g⟩^{1/2}.

 Def. We call f Locally Lipschitz Continuous (with respect to d) if ||g||^{*}_x ≤ M for all g ∈ ∂f(x), x ∈ dom f.

Theorem: function f has Bounded Growth with $\varphi(\tau) = \omega\left(\frac{\tau}{M}\right)$,

1. *Functions with bounded subgradients*. Assume that the scaling function is strongly convex:

 $eta_d(x,y) = d(y) - d(x) - \langle
abla d(x), y - x
angle \geq rac{1}{2} \|x - y\|^2, \, x, y \in \mathrm{dom}\, d.$

Then for any function with bounded subgradients:

 $\|g\|_* \leq M$ for all $g \in \partial f(x)$ and all $x \in \text{dom } f$, we have $\langle g, x - y \rangle \leq M \|x - y\| \leq M \sqrt{2\beta_d(x, y)}$. Thus, we can take $\varphi(\tau) = \frac{\tau^2}{2M^2}$.

2. Local Lipschitz condition. Let d(·) be a self-concordant function: D³d(x)[h]³ ≤ 2⟨∇²d(x)h, h)⟩^{1/2} for all x ∈ dom d and h ∈ ℝⁿ. Local norms: ||h||_x = ⟨∇²f(x)h, h⟩^{1/2}, ||g||_x^{*} = ⟨g, [∇²f(x)]⁻¹g⟩^{1/2}. Def. We call f Locally Lipschitz Continuous (with respect to d) if ||g||_x^{*} ≤ M for all g ∈ ∂f(x), x ∈ dom f.

Theorem: function f has Bounded Growth with $\varphi(\tau) = \omega\left(\frac{\tau}{M}\right)$, where $\omega(\tau) = \tau - \ln(1 + \tau)$.

3. <u>Positive concave functions</u>.

3. <u>Positive concave functions</u>.

Consider the following *maximization* problem:

3. <u>Positive concave functions</u>.

Consider the following *maximization* problem:

 $\max_{x\in Q}\psi(x),$

3. <u>Positive concave functions</u>.

Consider the following *maximization* problem:

 $\max_{x\in Q}\psi(x),$

where

3. <u>Positive concave functions</u>.

Consider the following *maximization* problem:

 $\max_{x\in Q}\psi(x),$

where

▶ *Q* is a closed bounded convex set,

3. <u>Positive concave functions</u>.

Consider the following *maximization* problem:

 $\max_{x\in Q}\psi(x),$

where

▶ Q is a closed bounded convex set, for which we know a self-concordant barrier d(·),

3. <u>Positive concave functions</u>.

Consider the following *maximization* problem:

 $\max_{x\in Q}\psi(x),$

where

► Q is a closed bounded convex set, for which we know a self-concordant barrier d(·),

• $\psi(\cdot)$ is a concave function.

3. <u>Positive concave functions</u>.

Consider the following *maximization* problem:

 $\max_{x\in Q}\psi(x),$

where

- ► Q is a closed bounded convex set, for which we know a self-concordant barrier d(·),
- $\psi(\cdot)$ is a concave function.

Assumption. Function $\psi(\cdot)$ is *non-negative* on Q.

3. <u>Positive concave functions</u>.

Consider the following *maximization* problem:

 $\max_{x\in Q}\psi(x),$

where

- ► Q is a closed bounded convex set, for which we know a self-concordant barrier d(·),
- $\psi(\cdot)$ is a concave function.

Assumption. Function $\psi(\cdot)$ is *non-negative* on Q.

Theorem. Function $f(x) = -\ln \psi(x)$

3. <u>Positive concave functions</u>.

Consider the following *maximization* problem:

 $\max_{x\in Q}\psi(x),$

where

- ▶ Q is a closed bounded convex set, for which we know a self-concordant barrier d(·),
- $\psi(\cdot)$ is a concave function.

Assumption. Function $\psi(\cdot)$ is *non-negative* on Q.

Theorem. Function $f(x) = -\ln \psi(x)$ has Bounded Growth on Q

3. <u>Positive concave functions</u>.

Consider the following *maximization* problem:

 $\max_{x\in Q}\psi(x),$

where

- ▶ Q is a closed bounded convex set, for which we know a self-concordant barrier d(·),
- $\psi(\cdot)$ is a concave function.

Assumption. Function $\psi(\cdot)$ is *non-negative* on Q.

Theorem. Function $f(x) = -\ln \psi(x)$ has Bounded Growth on Q with

M = 1.

3. <u>Positive concave functions</u>.

Consider the following *maximization* problem:

 $\max_{x\in Q}\psi(x),$

where

- ► Q is a closed bounded convex set, for which we know a self-concordant barrier d(·),
- $\psi(\cdot)$ is a concave function.

Assumption. Function $\psi(\cdot)$ is *non-negative* on Q.

Theorem. Function $f(x) = -\ln \psi(x)$ has Bounded Growth on Q with

M = 1.

NB:

3. <u>Positive concave functions</u>.

Consider the following *maximization* problem:

 $\max_{x\in Q}\psi(x),$

where

- ► Q is a closed bounded convex set, for which we know a self-concordant barrier d(·),
- $\psi(\cdot)$ is a concave function.

Assumption. Function $\psi(\cdot)$ is *non-negative* on Q.

Theorem. Function $f(x) = -\ln \psi(x)$ has Bounded Growth on Q with

$$M = 1.$$

NB: By minimizing $f(\cdot)$

3. <u>Positive concave functions</u>.

Consider the following *maximization* problem:

 $\max_{x\in Q}\psi(x),$

where

- ► Q is a closed bounded convex set, for which we know a self-concordant barrier d(·),
- $\psi(\cdot)$ is a concave function.

Assumption. Function $\psi(\cdot)$ is *non-negative* on Q.

Theorem. Function $f(x) = -\ln \psi(x)$ has Bounded Growth on Q with

$$M = 1.$$

NB: By minimizing $f(\cdot)$ with absolute accuracy,

3. <u>Positive concave functions</u>.

Consider the following *maximization* problem:

 $\max_{x\in Q}\psi(x),$

where

- ▶ Q is a closed bounded convex set, for which we know a self-concordant barrier d(·),
- $\psi(\cdot)$ is a concave function.

Assumption. Function $\psi(\cdot)$ is *non-negative* on Q.

Theorem. Function $f(x) = -\ln \psi(x)$ has Bounded Growth on Q with

M = 1.

NB: By minimizing $f(\cdot)$ with absolute accuracy, we maximize $\psi(\cdot)$

3. <u>Positive concave functions</u>.

Consider the following *maximization* problem:

 $\max_{x\in Q}\psi(x),$

where

- ▶ Q is a closed bounded convex set, for which we know a self-concordant barrier d(·),
- $\psi(\cdot)$ is a concave function.

Assumption. Function $\psi(\cdot)$ is *non-negative* on Q.

Theorem. Function $f(x) = -\ln \psi(x)$ has Bounded Growth on Q with

$$M = 1.$$

NB: By minimizing $f(\cdot)$ with absolute accuracy, we maximize $\psi(\cdot)$ with relative accuracy.
Consider the problem

Consider the problem

Consider the problem

where

Consider the problem

where

► Q is a closed convex set,

Consider the problem

 $\min_{x \in Q} f(x), \quad \text{where} \quad$

- ► *Q* is a closed convex set,
- function f has Bounded Growth with respect to (d, φ) .

Consider the problem

 $\min_{x \in Q} f(x), \quad \text{where} \quad$

- ► *Q* is a closed convex set,
- function f has Bounded Growth with respect to (d, φ) .

Define the Bregmann mapping

Consider the problem

 $\min_{x \in Q} f(x), \quad \text{where} \quad$

- ► *Q* is a closed convex set,
- function f has Bounded Growth with respect to (d, φ) .

Define the Bregmann mapping

$$T_h(\bar{x},g) = \arg\min_{x \in Q} \left\{ \langle g, x - \bar{x} \rangle + \frac{1}{h} \beta_d(\bar{x},x)
ight\}.$$

Consider the problem

 $\min_{x \in Q} f(x), \quad \text{where} \quad$

- ► *Q* is a closed convex set,
- function f has Bounded Growth with respect to (d, φ) .

Define the Bregmann mapping

$$T_h(\bar{x},g) = \arg\min_{x \in Q} \left\{ \langle g, x - \bar{x} \rangle + \frac{1}{h} \beta_d(\bar{x},x)
ight\}.$$

Gradient Method:

Consider the problem

 $\min_{x \in Q} f(x), \quad \text{where} \quad$

- ► *Q* is a closed convex set,
- function f has Bounded Growth with respect to (d, φ) .

Define the Bregmann mapping

$$\mathcal{T}_h(ar{x},g) = rg\min_{x\in Q} \left\{ \langle g, x-ar{x}
angle + rac{1}{h} eta_d(ar{x},x)
ight\}.$$

Gradient Method:

$$x_{k+1}=T_{h_k}(x_k,g_k), \ k\geq 0,$$

Consider the problem

 $\min_{x \in Q} f(x), \quad \text{where} \quad$

- ► *Q* is a closed convex set,
- function f has Bounded Growth with respect to (d, φ) .

Define the Bregmann mapping

$$T_h(ar{x},g) = \arg\min_{x\in Q} \left\{ \langle g, x - ar{x}
angle + rac{1}{h} eta_d(ar{x},x)
ight\}.$$

Gradient Method:

$$x_{k+1}=T_{h_k}(x_k,g_k), \ k\geq 0,$$

where $g_k \in \partial f(x_k)$, $h_k > 0$, and $x_0 \in Q$.

Consider the problem

 $\min_{x \in Q} f(x), \quad \text{where} \quad$

- ► *Q* is a closed convex set,
- function f has Bounded Growth with respect to (d, φ) .

Define the Bregmann mapping

$$T_h(ar{x},g) = \arg\min_{x\in Q} \left\{ \langle g, x - ar{x}
angle + rac{1}{h} eta_d(ar{x},x)
ight\}.$$

Gradient Method:

$$x_{k+1}=T_{h_k}(x_k,g_k), \ k\geq 0,$$

where $g_k \in \partial f(x_k)$, $h_k > 0$, and $x_0 \in Q$.

Theorem.

Consider the problem

 $\min_{x \in Q} f(x), \quad \text{where} \quad$

- ► *Q* is a closed convex set,
- function f has Bounded Growth with respect to (d, φ) .

Define the Bregmann mapping

$$T_h(ar{x},g) = \arg\min_{x\in Q} \left\{ \langle g, x - ar{x}
angle + rac{1}{h} eta_d(ar{x},x)
ight\}.$$

Gradient Method: $x_{k+1} = T_{h_k}(x_k, g_k), \ k \ge 0,$

where $g_k \in \partial f(x_k)$, $h_k > 0$, and $x_0 \in Q$.

Theorem. Denote $S_T = \sum_{k=0}^T h_k$.

Consider the problem

 $\min_{x \in Q} f(x), \quad \text{where} \quad$

- ► *Q* is a closed convex set,
- function f has Bounded Growth with respect to (d, φ) .

Define the Bregmann mapping

$$\mathcal{T}_h(ar{x},g) = rg\min_{x\in Q} \left\{ \langle g, x-ar{x}
angle + rac{1}{h} eta_d(ar{x},x)
ight\}.$$

Gradient Method: $x_{k+1} = T_{h_k}(x_k, g_k), \ k \ge 0,$

where $g_k \in \partial f(x_k)$, $h_k > 0$, and $x_0 \in Q$.

Theorem. Denote
$$S_T = \sum_{k=0}^T h_k$$
. Then

$$\Delta_T \stackrel{\text{def}}{=} \min_{0 \le k \le T} f(x_k) - f^* \le \frac{1}{S_T} \left[\beta_d(x_0, x^*) + \sum_{k=0}^T \varphi_*(h_k) \right],$$

Consider the problem

 $\min_{x \in Q} f(x), \quad \text{where} \quad$

- ► *Q* is a closed convex set,
- function f has Bounded Growth with respect to (d, φ) .

Define the Bregmann mapping

$$\mathcal{T}_h(ar{x},g) = rg\min_{x\in Q} \left\{ \langle g, x-ar{x}
angle + rac{1}{h} eta_d(ar{x},x)
ight\}.$$

Gradient Method: $x_{k+1} = T_{h_k}(x_k, g_k), \ k \ge 0,$

where $g_k \in \partial f(x_k)$, $h_k > 0$, and $x_0 \in Q$.

Theorem. Denote
$$S_T = \sum_{k=0}^T h_k$$
. Then

$$\Delta_T \stackrel{\text{def}}{=} \min_{0 \le k \le T} f(x_k) - f^* \le \frac{1}{S_T} \left[\beta_d(x_0, x^*) + \sum_{k=0}^T \varphi_*(h_k) \right],$$
where $\varphi_*(t) = \max_{\tau \ge 0} \{\tau t - \varphi(\tau)\}.$

Consider the problem

 $\min_{x \in Q} f(x), \quad \text{where} \quad$

- ► *Q* is a closed convex set,
- function f has Bounded Growth with respect to (d, φ) .

Define the Bregmann mapping

$$\mathcal{T}_h(ar{x},g) = rg\min_{x\in Q} \left\{ \langle g, x-ar{x}
angle + rac{1}{h} eta_d(ar{x},x)
ight\}.$$

Gradient Method: $x_{k+1} = T_{h_k}(x_k, g_k), \ k \ge 0,$

where $g_k \in \partial f(x_k)$, $h_k > 0$, and $x_0 \in Q$.

Theorem. Denote
$$S_T = \sum_{k=0}^T h_k$$
. Then

$$\Delta_T \stackrel{\text{def}}{=} \min_{0 \le k \le T} f(x_k) - f^* \le \frac{1}{S_T} \left[\beta_d(x_0, x^*) + \sum_{k=0}^T \varphi_*(h_k) \right],$$
where $\varphi_*(t) = \max_{\tau \ge 0} \{\tau t - \varphi(\tau)\}.$

Examples:

Consider the problem

 $\min_{x \in Q} f(x), \quad \text{where} \quad$

- Q is a closed convex set,
- function f has Bounded Growth with respect to (d, φ) .

Define the Bregmann mapping

$$\mathcal{T}_h(ar{x},g) = rg\min_{x\in Q} \left\{ \langle g, x-ar{x}
angle + rac{1}{h} eta_d(ar{x},x)
ight\}.$$

Gradient Method: $x_{k+1} = T_{h_k}(x_k, g_k), k \ge 0,$

where $g_k \in \partial f(x_k)$, $h_k > 0$, and $x_0 \in Q$.

Theorem. Denote
$$S_T = \sum_{k=0}^T h_k$$
. Then

$$\Delta_T \stackrel{\text{def}}{=} \min_{0 \le k \le T} f(x_k) - f^* \le \frac{1}{S_T} \left[\beta_d(x_0, x^*) + \sum_{k=0}^T \varphi_*(h_k) \right],$$
where $\varphi_*(t) = \max_{\tau \ge 0} \{\tau t - \varphi(\tau)\}.$

Examples: $h_k \approx \frac{1}{\sqrt{k+1}}$,

Consider the problem

 $\min_{x \in Q} f(x), \quad \text{where} \quad$

- ► *Q* is a closed convex set,
- function f has Bounded Growth with respect to (d, φ) .

Define the Bregmann mapping

$$\mathcal{T}_h(ar{x},g) = rg\min_{x\in Q} \left\{ \langle g, x-ar{x}
angle + rac{1}{h} eta_d(ar{x},x)
ight\}.$$

Gradient Method: $x_{k+1} = T_{h_k}(x_k, g_k), k \ge 0,$

where $g_k \in \partial f(x_k)$, $h_k > 0$, and $x_0 \in Q$.

Theorem. Denote
$$S_T = \sum_{k=0}^T h_k$$
. Then

$$\Delta_T \stackrel{\text{def}}{=} \min_{0 \le k \le T} f(x_k) - f^* \le \frac{1}{S_T} \left[\beta_d(x_0, x^*) + \sum_{k=0}^T \varphi_*(h_k) \right],$$
where $\varphi_*(t) = \max_{\tau \ge 0} \{ \tau t - \varphi(\tau) \}.$
Examples: $h_k \approx \frac{1}{\sqrt{k+1}}, \Delta_T \le O\left(\frac{1}{\sqrt{T}}\right).$

1. Relative Smoothness Condition provides a new framework for development of new and efficient optimization schemes.

- **1.** Relative Smoothness Condition provides a new framework for development of new and efficient optimization schemes.
- 2. It is able to fit well the properties of the particular objective function.

- **1.** Relative Smoothness Condition provides a new framework for development of new and efficient optimization schemes.
- 2. It is able to fit well the properties of the particular objective function.
- 3. It is very new.

- **1.** Relative Smoothness Condition provides a new framework for development of new and efficient optimization schemes.
- 2. It is able to fit well the properties of the particular objective function.
- 3. It is very new. We are looking for the new and motivating applications.

- **1.** Relative Smoothness Condition provides a new framework for development of new and efficient optimization schemes.
- 2. It is able to fit well the properties of the particular objective function.
- 3. It is very new. We are looking for the new and motivating applications.

THANK YOU FOR YOUR ATTENTION!