Modeling the Aggregator problem: the economic dispatch and dynamic scheduling of flexible electrical loads

Anna Scaglione

June 23, 2014

イロト イロト イヨト イヨト 三日

1/51

Premise Balancing the Grid

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □ ○ ○ ○ ○

2/51

How can generators know how much to produce?

Q Retail electricity market \rightarrow public utility, serves/tracks demand

- Customers do not see and do not respond to the real prices
- Wholesale electricity market ≈ perfect competition for generators
 A centralized optimization (run by an Independent System Operator) provides prices
 - Multiple settlements: Day Ahead (DA) \rightarrow Hour Ahead (HA) \rightarrow Real Time (RT) \rightarrow Regulation ... to manage load uncertainty

Why are we not using more green electricity?

We are scheduling for Net consumption = Load - Renewable power

- Advantage: inelastic net consumption is back compatible with current electricity market
- Problem: unsustainable. Large generator ramps + reserves for dealing with uncertainty blow up costs and pollution

Why are we not using more green electricity?

We are scheduling for Net consumption = Load - Renewable power

- Advantage: inelastic net consumption is back compatible with current electricity market
- Problem: unsustainable. Large generator ramps + reserves for dealing with uncertainty blow up costs and pollution

5/51

Electric Consumption Flexibility

• Demand is random but not truly inflexible, but today there is no standard appliance interface to modulate it

- Demand Response (DR) programs tap into the flexibility of end-use demand for multiple purposes
- But how much **intrinsic flexibility** does the aggergate demand of a large appliance population have?

Definition: **Plasticity**

The potential shapes that the load of an appliance or a population of appliances can take

The Smart Grid vision

• Most of the work is on the home price response side

The Smart Grid System Challenge

イロト イヨト イヨト イヨト

Demand Response: The Aggregator Problem

Heterogenous population (...it is "The Internet of Things")

- Challenge 1: Modeling the flexibility ex-ante in the market
- Challenge 2: Real time control of the appliances
- Challenge 3: Economics: Convincing the customers to participate

PART I - Modeling Electric Load Flexibility ("Plasticity")

- The plasticity of a canonical battery
- Population models for a very large number of canonical batteries

10/51

- Generalizing results to real appliances
- Planning and control
- PART II Retail Markets with Plasticity
 - Designing retail prices and incentives

Part I Load Flexibility Models

- Tank model: Fill the flexible demand tank by the end of the day [Lambert, Gilman, Lilienthal, '06], [Lamadrid, Mount, Zimmerman, Murillo-Sanchez, '11], [Papavasiliou, Oren '10]
 - For the market, to set prices
- Detailed model: Model each individual appliance constraints [Joo,Ilic,'10], [Huang, Walrand, Ramchandran,'11], [Foster, Caramanis,'13]
 - For local controllers that respond to dynamic prices
- Quantized Population Models: Cluster appliances and derive an aggregate model [Chong85], [Mathleu, Koch, Callaway, '13], [Alizadeh, Scaglione, Thomas, '12]...
 - Good for both! What we discuss next....

- Tank model: Fill the flexible demand tank by the end of the day [Lambert, Gilman, Lilienthal,'06], [Lamadrid, Mount, Zimmerman, Murillo-Sanchez, '11], [Papavasiliou, Oren '10]
 - For the market, to set prices
- Detailed model: Model each individual appliance constraints [Joo,Ilic,'10], [Huang, Walrand, Ramchandran,'11], [Foster, Caramanis,'13]
 - For local controllers that respond to dynamic prices
- Quantized Population Models: Cluster appliances and derive an aggregate model [Chong85], [Mathieu, Koch, Callaway, '13], [Alizadeh, Scaglione, Thomas, '12]...
 - Good for both! What we discuss next....

- Tank model: Fill the flexible demand tank by the end of the day [Lambert, Gilman, Lilienthal, '06], [Lamadrid, Mount, Zimmerman, Murillo-Sanchez, '11], [Papavasiliou, Oren '10]
 - For the market, to set prices
- Detailed model: Model each individual appliance constraints [Joo,Ilic, '10], [Huang, Walrand, Ramchandran, '11], [Foster, Caramanis, '13]
 - For local controllers that respond to dynamic prices
- Quantized Population Models: Cluster appliances and derive an aggregate model [Chong85], [Mathieu, Koch, Callaway, '13], [Alizadeh, Scaglione, Thomas, '12]...
 - Good for both! What we discuss next....

- Tank model: Fill the flexible demand tank by the end of the day [Lambert, Gilman, Lilienthal, '06], [Lamadrid, Mount, Zimmerman, Murillo-Sanchez, '11], [Papavasiliou, Oren '10]
 - For the market, to set prices
- Detailed model: Model each individual appliance constraints [Joo,Ilic,'10], [Huang, Walrand, Ramchandran,'11], [Foster, Caramanis,'13]
 - For local controllers that respond to dynamic prices
- Quantized Population Models: Cluster appliances and derive an aggregate model [Chong85],[Mathieu,Koch, Callaway,'13],[Alizadeh, Scaglione, Thomas,'12]...
 - Good for both! What we discuss next....

- Tank model: Fill the flexible demand tank by the end of the day [Lambert, Gilman, Lilienthal, '06], [Lamadrid, Mount, Zimmerman, Murillo-Sanchez, '11], [Papavasiliou, Oren '10]
 - For the market, to set prices
- Detailed model: Model each individual appliance constraints [Joo,Ilic,'10], [Huang, Walrand, Ramchandran,'11], [Foster, Caramanis,'13]
 - For local controllers that respond to dynamic prices
- Quantized Population Models: Cluster appliances and derive an aggregate model [Chong85],[Mathieu,Koch, Callaway,'13],[Alizadeh, Scaglione, Thomas,'12]...
 - Good for both! What we discuss next....

- Tank model: Fill the flexible demand tank by the end of the day [Lambert, Gilman, Lilienthal, '06], [Lamadrid, Mount, Zimmerman, Murillo-Sanchez, '11], [Papavasiliou, Oren '10]
 - For the market, to set prices
- Detailed model: Model each individual appliance constraints [Joo,Ilic, '10], [Huang, Walrand, Ramchandran, '11], [Foster, Caramanis, '13]
 - For local controllers that respond to dynamic prices
- Quantized Population Models: Cluster appliances and derive an aggregate model [Chong85],[Mathieu,Koch, Callaway,'13],[Alizadeh, Scaglione, Thomas,'12]...
 - Good for both! What we discuss next....

Example of Load Plasticity: Ideal Battery

One ideal battery indexed by \boldsymbol{i}

- Arrives at t_i and remains on indefinitely
- No rate constraint
- Initial charge of S_i
- Capacity \mathbf{E}_i

The plasticity of battery i is defined as

$$\mathcal{L}_i(t) = \{L_i(t) | L_i(t) = dx_i(t)/dt, x_i(t_i) = S_i, 0 \le x_i(t) \le E_i, t \ge t_i\}.$$

In English:

Load (power) = rate of change in state of charge x(t) (energy)

• Set $\mathcal{L}_i(t)$ characterized by appliance category v (ideal battery) and 3 continuous parameters:

$$\boldsymbol{\theta}_i = (t_i, S_i, E_i)$$

But how can we capture the plasticity of thousands of these batteries?

Aggregate Plasticity

We define the following operations on plasticities $\mathcal{L}_1(t)$, $\mathcal{L}_2(t)$:

$$\mathcal{L}_1(t) + \mathcal{L}_2(t) = \left\{ L(t) | L(t) = L_1(t) + L_2(t), (L_1(t), L_2(t)) \in \mathcal{L}_1(t) \times \mathcal{L}_2(t) \right\}$$

$$n\mathcal{L}(t) = \left\{ L(t)|L(t) = \sum_{k=1}^{n} L_k(t), \ (L_1(t), ..., L_n(t)) \in \mathcal{L}^n(t) \right\},\$$

where $n \in \mathbb{N}$ and $0\mathcal{L}_1(t) \equiv \{0\}$.

• Then, the plasticity of a population \mathcal{P}^{v} of ideal batteries is

$$\mathcal{L}^{v}(t) = \sum_{i \in \mathcal{P}^{v}} \mathcal{L}_{i}(t)$$
(1)

イロト イヨト イヨト イヨト

Plasticity of population = sum of individual plasticities

What if we have a very large population?

• Natural step \rightarrow quantize the parameters: $\boldsymbol{\theta}_i = (t_i, S_i, E_i)$

$$\boldsymbol{\theta} \mapsto \boldsymbol{\vartheta} \in \text{Finite set } \mathcal{T}^v$$

- Quantize state and time uniformly with step $\delta t = 1$ and $\delta x = 1$
- Discrete version (after sampling + quantization) of plasticity:

$$\mathcal{L}_{i}(t) = \{ L_{i}(t) | L_{i}(t) = \partial x_{i}(t), x_{i}(t_{i}) = S_{i}, x_{i}(t) \in \{0, 1, \dots, E_{i}\}, t \ge t_{i} \}.$$

イロト イポト イヨト イヨト 二日

20/51

• Plasticity of all batteries with discrete parameters $\boldsymbol{\vartheta} = \mathcal{L}_{\boldsymbol{\vartheta}}^{v}(t)$

Lowering the Complexity of $\mathcal{L}^{v}(t)$?

• Let $a^v_{\boldsymbol{\vartheta}}(t) \triangleq$ number of batteries with discrete parameters $\boldsymbol{\vartheta}$

$$\mathcal{L}^{v}(t) = \sum_{\boldsymbol{\vartheta} \in \mathcal{T}^{v}} a^{v}_{\boldsymbol{\vartheta}}(t) \mathcal{L}^{v}_{\boldsymbol{\vartheta}}(t), \qquad \sum_{\boldsymbol{\vartheta} \in \mathcal{T}^{v}} a^{v}_{\boldsymbol{\vartheta}}(t) = |\mathcal{P}_{v}|.$$
(2)

• $v = 1, \ldots, V$ different categories of appliances

$$\mathcal{L}(t) = \mathcal{L}^{I}(t) + \sum_{v=1}^{V} \mathcal{L}^{v}(t), \qquad \mathcal{L}^{I}(t) = \{L^{I}(t)\} \text{ inelastic load } (3)$$

- Still redundant for aggregate load modeling
- The set $\sum_{\boldsymbol{\vartheta}} a_{\boldsymbol{\vartheta}}^{v} \mathcal{L}_{\boldsymbol{\vartheta}}^{v}(t)$ can be combined for some $\boldsymbol{\vartheta}$ and represented by fewer variables

Bundling Appliances with Similar Constraints

- Population \mathcal{P}_E^v with homogenous E but different (t_i, S_i)
- Define arrival process for battery i

 $a_i(t) = u(t - t_i) \rightarrow \text{indicator that battery } i \text{ is plugged in}$

- We prefer not to keep track of individual appliances
- Random state arrival process on aggregate

$$a_x(t) = \sum_{i \in \mathcal{P}_E^v} \delta(S_i - x) a_i(t), \quad x = 1, \dots, E$$

• Aggregate state occupancy

$$n_x(t) = \sum_{i \in \mathcal{P}_E^v} \delta(x_i(t) - x) a_i(t), \quad x = 1, \dots, E$$

・ロト ・ 一日 ト ・ 目 ト ・ 目 ・ の へ (や 22 / 51

Lemma

The relationship between load and occupancy is:

$$L(t) = \sum_{x=0}^{E} \left[\left(\sum_{x'=x}^{E} \partial n_{x'}(t) \right) - (x+1) \partial a_x(t) \right].$$

• Can we say more when the change in state is the result of a control action?

Effect of Control Actions

Activation process from state x' to x:

 $d_{x,x'}(t) = \#$ batteries that go from state x to state x' up to time t

Naturally, $\partial d_{x,x'}(t) \leq n_x(t)$.

Corollary

The relationship between occupancy, control and load are:

$$n_x(t+1) = a_x(t+1) + \sum_{x'=0}^{E} [d_{x',x}(t) - d_{x,x'}(t)]$$
$$L(t) = \sum_{x=0}^{E} \sum_{x'=0}^{E} (x'-x) \partial d_{x,x'}(t)$$

Notice the linear and simple nature of L(t) in terms of $d_{x,x'}(t)$

Bundling Batteries with Non-homogeneous Capacity

- $\bullet\,$ Results up to now are valid for batteries with homogenous capacity E
- The capacity changes the underlying structure of plasticity
- We divide appliances into **clusters** $q = 1, ..., Q^v$ based on the quantized value of E_i

イロト イヨト イヨト イヨト

Quantized Linear Load Model

Load plasticity of heterogenous ideal battery population

$$\mathcal{L}^{v}(t) = \left\{ L(t) | L(t) = \sum_{q=1}^{Q} \sum_{x=0}^{E^{q}} \sum_{x'=0}^{E^{q}} (x'-x) \partial d_{x,x'}^{q}(t) \\ \partial d_{x,x'}^{q}(t) \in \mathbb{Z}^{+}, \sum_{x'=1}^{E^{q}} \partial d_{x,x'}^{q}(t) \le n_{x}^{q}(t) \right\}$$

$$n_x^q(t) = a_x^q(t) + \sum_{x'=0}^{E^q} [d_{x',x}^q(t-1) - d_{x,x'}^q(t-1)]$$

Linear, and scalable at large-scale by removing integrality constraints Aggregate model= Tank Model [Lambert, Gilman, Lilienthal,'06]

More constrained models for load plasticity

- The canonical battery can go from any state to any state and has no deadline or other constraints.
- What about real appliances? Some are simple extensions
- Rate-constrained battery chage, e.g., V2G

• Interruptible consumption at a constant rate, e.g., pool pump, EV 1.1kW charge

- You can add deadlines using the same principle: cluster appliances with the same deadline χ^q
- Then, you simply express the constraint inside the plasticity set

$$\mathcal{L}^{v}(t) = \left\{ L(t) | L(t) = \sum_{q=1}^{Q^{v}} \sum_{x=0}^{E^{q}} \sum_{x'=0}^{E^{q}} (x'-x) \partial d_{x,x'}^{q}(t) \\ \partial d_{x,x'}^{q}(t) \in \mathbb{Z}^{+}, \forall x, x' \in \{0, 1, \dots, E^{q}\} \\ \sum_{x'=1}^{E^{q}} \partial d_{x,x'}^{q}(t) \le n_{x}^{q}(t), \forall x < E^{q} \to n_{x}(\chi^{q}) = 0 \right\}$$
(4)

イロト イポト イヨト イヨト 二日

29/51

Non-interruptible Appliances - Individual Plasticity

- Loads that can be shifted within a time frame but cannot be modified after activation, e.g., washer/dryers
- $x_i(t) \in \{0, 1\}$ = state of appliance *i* (wainting/activated)
- Impluse response of appliance *i* if activated at time $0 = g_i(t)$
- Laxity (slack time) of χ_i

$$\mathcal{L}_{i}(t) = \{ L_{i}(t) | L_{i}(t) = g_{i}(t) \star \partial x_{i}(t), x_{i}(t) \in \{0, 1\},$$

$$x_{i}(t) \geq a_{i}(t - \chi_{i}), x_{i}(t - 1) \leq x_{i}(t) \leq a_{i}(t) \}.$$
(5)

Load = change in state convolved with the load shape $g_i(t)$

$$\xrightarrow{x_i(t)} \partial \xrightarrow{g_i(t)} L_i(t) = g_i(t) \star \partial x_i(t)$$

Note: $d_{0,1}^q(t) \equiv d^q(t) \equiv x^q(t)$

Non-interruptible Appliances - Aggregate Plasticity

- We assign appliances to cluster q based on quantized pulses $g^q(t)$
- $a^q(t) = \text{total number of arrivals in cluster } q$ up to time t
- $d^{q}(t) = \text{total number of activations from cluster } q$ up to time t

$$\mathcal{L}^{v}(t) = \left\{ L(t) | L(t) = \sum_{q=1}^{Q^{v}} g^{q}(t) \star \partial d^{q}(t), d^{q}(t) \in \mathbb{Z}^{+}$$

$$d^{q}(t) \geq a^{q}(t - \chi^{q}), d^{q}(t - 1) \leq d^{q}(t) \leq a^{q}(t) \right\}$$

$$(6)$$

$$d^{q}(t) \geq a^{q}(t - \chi^{q}), d^{q}(t - 1) \leq d^{q}(t) \leq a^{q}(t)$$

- Dimmable Lighting, like Hybrid system, but you control $g_i(t)$ instead of the switch state
- Thermostatically Controlled Loads (TCL) require a bit more effort but one can follow the same constructs
-you can soon get a pretty complete family of models
- If it can shift demand, the Aggregator can hedge the electricity market settlements.
- The Aggregator needs to control the appliances. How?

Two options to harness the population plasticity $\mathcal{L}(t)$

- Dynamic Pricing: The Aggregator sends a price signal, the customers respond with a local Home/Building Energy Management System
- Direct Load Scheduling: The Aggregator provides different pricing incentives, to control directly electric loads
- In both cases, due to limited degrees of control on heterogenous demand:

 $\mathcal{L}^{DR}(t) \subseteq \mathcal{L}(t)$

イロト イポト イヨト イヨト 二日

33 / 51

• The price signal or incentive affects the arrival processes $a_x^q(t)$

Steps for the Aggregator Direct Load Scheduling (DLS)

Pricing Incentive design:

• Design incentives to recruit appliances - - will discuss in part II

Steps for the Aggregator Direct Load Scheduling (DLS)

Pricing Incentive design:

• Design incentives to recruit appliances - will discuss in part II Planning:

- Forecast arrivals in clusters for different categories
- Make optimal market decisions based on forecasted plasticity

Steps for the Aggregator Direct Load Scheduling (DLS)

Pricing Incentive design:

• Design incentives to recruit appliances - will discuss in part II Planning:

- Forecast arrivals in clusters for different categories
- Make optimal market decisions based on forecasted plasticity

Real-time:

- Observe arrivals in clusters
- Decide appliance schedules $d^{q}(t)$ to optimize load

Real-time: How do we activating appliances?

Arrival and Activation Processes

 $a_q(t)$ and $d_q(t) \to$ total recruited appliances and activations before time t in the q-th queue

• Easy communications: Broadcast time stamp T_{act} : $a_q(t - T_{act}) = d_q(t)$

• Appliance whose arrival is prior than $T_{act.}$ initiate to draw power based on the broadcast control message

Population modeling with the Tank Model

- Population of 40000 PHEVs + 1.1 kW non-interruptible charging
- Tank model = PHEVs effectively modeled as canonical batteries

• Real-world plug-in times and charge lengths • 15 clusters (1-5 hours charge + 1-3 hours laxity) • PHEV demand = 10% of peak load • DA= Day Ahead • PJM market prices DA $10/22/2013 \bullet \text{Real time}$ prices = adjustments cost20% more than DA • DA = LP + SAA with 50 random scenarios +tank model • RT = ILP + Certaintyequivalence + clustering

Population modeling with proposed quantizion scheme

- Quantized Deferrable EV model
- Load following dispatch very closely when using our model

- Same setting
- DA = LP + Sample Average $\approx \mathbb{E}\{a^q(t)\}\$ (50 random scenarios) + clustering
- Real Time Control = ILP + Certainty equivalence + clustering

イロト イポト イヨト イヨト

Part II Pricing Incentive Design

DR #1: Dynamic Pricing

- Dynamic retail prices $\mathbf{x}(t) = [\pi^r(t), \dots, \pi^r(t+T)] \in \mathcal{Z}(t)$ (set of regulated prices)
- Possible load shapes:

$$\mathcal{L}^{DR}(t) = \left\{ L(t) | L(t) = f(t; \mathbf{x}(t)), \mathbf{x}(t) \in \mathcal{Z}(t) \right\}$$
(7)

• Here f(.) is the price-response of the population

quantized price response - known

◆ロト ◆御 と ◆注 と ◆注 と ─ 注

$$f(t; \mathbf{x}(t)) = L^{I}(t) + \sum_{v=1}^{V} \sum_{\vartheta \in \mathcal{T}^{v}} \left\{ \underbrace{a_{\vartheta}^{v}(\mathbf{x}(t))}_{\text{unobservable}} \underbrace{\arg\min}_{L(t) \in \mathcal{L}_{\vartheta}^{v}(t)} \sum_{t=1}^{T} \pi^{r}(t) L(t) \right\}$$

• Price response only observable in aggregate and not for different clusters \rightarrow learning $a^v_{\theta}(\mathbf{x}(t))$ from limited observations

DR #2: Pricing for Direct Load Scheduling (DLS)

- An aggregator hires appliances and directly schedules their load
- Set of differentiated prices based on plasticity

$$\boldsymbol{x}^{v}(t) = \{x^{v}_{\vartheta}(t), \forall \boldsymbol{\vartheta} \in \mathcal{T}^{v}\}$$

But how can we have voluntary participation in DLS?

- Differentiated discounts $x^v(t)$ from a high flat rate \rightarrow incentives
- Appliances choose to participate based on incentives $\rightarrow a_{\vartheta}^v(\boldsymbol{x}^v(t))$

$$\mathcal{L}^{DR}(t) = \mathcal{L}^{I}(t; \boldsymbol{x}^{v}) + \sum_{v=1}^{V} \sum_{\boldsymbol{\vartheta} \in \mathcal{T}^{v}} a_{\boldsymbol{\vartheta}}^{v}(\boldsymbol{x}^{v}(t)) \mathcal{L}_{\boldsymbol{\vartheta}}^{v}(t).$$
(8)

• Reliable: aggregator observes $a^v_{\vartheta}(x^v(t))$ after posting incentives and before control - no uncertainty in control

Dynamically Designed Cluster-specific Incentives

- $\bullet\,$ Characteristics in ϑ have 2 types: intrinsic and customer chosen
- We cluster appliances based on intrinstic characterics, e.g. $g^{q}(t)$
- Customer picks operation mode m, e.g., laxity χ

We design a set of incentives $x_m^{v,q}(t), m = 1, \dots, M^{v,q}$ for each cluster

[Alizadeh, Xiao, Scaglione, Van Der Schaar 2013], see also [Bitar, Xu 2013], [Kefayati, Baldick, 2011]

43 / 51

Incentive design

- Category v and cluster $q \rightarrow$ intrinsic properties of loads
- Aggregator posts incentives for each mode of loads in cluster q and category \boldsymbol{v}
- Optimal posted prices? The closest approximation is the "optimal unit demand pricing"
- Customers valuation for different modes correlated (value of EV charge with 1 hr laxity vs. value of EV charge with 2 hrs laxity)

The Incentive Design Problem

- Independent incentive design problem for different categories vand clusters $q \to \text{Let's drop } q, v$ for brevity
- Aggregator designs

$$\mathbf{x}(t) = [x_1(t), x_2(t), \dots, x_M(t)]^T,$$
(9)

• From recruitment of flexible appliances, the aggregator saves money in the wholesale market (utility):

$$\mathbf{u}(t) = [U_1(t), \dots, U_M(t)]^T$$
(10)

• Aggregator payoff when interacting with a specific cluster population:

$$Y(\mathbf{x}(t);t) = \sum_{m \in \mathcal{M}} \underbrace{(U_m(t) - x_m(t))}_{m(t) - x_m(t)} \sum_{i \in \mathcal{P}(t)} \underbrace{a_{i,m}(\mathbf{x}(t);t)}_{i \in \mathcal{P}(t)} .$$
(11)

 $a_{i,m}(\mathbf{x}(t); t) = 1$ if load *i* picks mode *m* given incentives $\mathbf{x}(t)$

- Goal: maximize payoff $Y(\mathbf{x}(t); t)$
- Problem: we don't know how customers pick modes

Probabilistic Model for Incentive Design Problem

- At best we have statistics \rightarrow Maximize expected payoff
- Probability of load i picking mode m:

$$P_{i,m}(\mathbf{x}(t);t) = \mathbb{E}\{a_{i,m}(\mathbf{x}(t);t)\}.$$
(12)

- Incentives posted publically Individual customers not important
- Define the mode selection average probability across population:

$$P_m(\mathbf{x}(t); t) = \frac{\sum_{i \in \mathcal{P}(t)} P_{i,m}(\mathbf{x}(t); t)}{|\mathcal{P}(t)|}$$
(13)
$$\mathbf{p}(\mathbf{x}(t); t) = [P_0(\mathbf{x}(t); t), \dots, P_M(\mathbf{x}(t); t)]^T \to \text{what we need}$$
(14)

• Maximize expected payoff across cluster population

$$\max_{\mathbf{x}(t) \succeq \mathbf{0}} \mathbb{E} \left\{ \sum_{m \in \mathcal{M}} (U_m(t) - x_m(t)) \sum_{i \in \mathcal{P}(t)} a_{i,m}(\mathbf{x}(t); t) \right\} = \max_{\mathbf{x}(t) \succeq \mathbf{0}} \underbrace{\operatorname{known}}_{(\mathbf{u}(t) - \mathbf{x}(t))^T} \underbrace{\operatorname{unknown}}_{\mathbf{p}(\mathbf{x}(t); t)} \tag{15}$$

46/51

Modeling the customer's decision

Approaches to model $\mathbf{p}(\mathbf{x}(t); t)$? (average probability that the aggregator posts $\mathbf{x}(t)$ and a customer picks each mode m)

• Bayesian model-based method: rational customer - $\max(V_i(t))$ Risk-averseness captured by types

customer utility
$$V_i(t) = \sum_{v,q} x_m^{v,q}(t) - R_{i,m}^{q,v}(t)$$

 $R_{i,m}^{q,v}(t) = \gamma_i^{v,q} r_m^{v,q}(t), \gamma_i$ random variable drawn from one PDF Model-free learning method: customers may only be boundedly rational. We need to learn their response to prices

How do we recruit? Residential charging...

- Aggregator schedules 620 uninterruptible PHEV charging events
- Prices from New England ISO DA market Maine load zone on Sept 1st 2013
- How many do we recruit (out of 620) and with what flexibility?

• More savings in the evening...

Welfare Effects in Retail Market

- Welfare generate via Direct Load Scheduling (DLS) vs. idealized Dynamic Pricing (marginal price passed directly to customer - no aggregator)
- Savings summed up across the 620 events (shown as a function of time of plug-in)

Conclusion

- We have discussed an information, decision, control and market models for responsive loads
- We left out how to sell renewables power as a result of this See work on Risk Limiting Dispatch (RLD) [Varaiya, Wu, Bialek,2011],[He, Murugesan, Zhang 2011], [Rajagopal, Bitar, Varaiya, Wu, 2013],...
- How much risk can one hedge in generation with load flexibility?...many questions left

Conclusion

- We have discussed an information, decision, control and market models for responsive loads
- We left out how to sell renewables power as a result of this See work on Risk Limiting Dispatch (RLD) [Varaiya, Wu, Bialek,2011],[He, Murugesan, Zhang 2011], [Rajagopal, Bitar, Varaiya, Wu, 2013],...
- How much risk can one hedge in generation with load flexibility?...many questions left

