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The Aim

The aim of displacement structure theory is to
uncover and exploit implicit structure in the
(dense) matrices encountered in applications in
several fields:

Communications, Signal Processing, System
Theory, Prediction and Filtering, Algebraic
Coding Theory, Queuing Theory, Interpolation
problems, Numerical Linear Algebra, Abstract
Linear Algebra and Matrix Theory



Structured Matrices: Explicit

Toeplitz = [xi_j] =|X-1 Xo X1

[ Xo X1 X2
X—2 X-1 Xo

_ (X0 X1 X2
Hankel = _xi+j] = X1 X2 X3

] X2 X3 Xa
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Vandermonde = |X1 X1 X3
| X2 X5 xg_
1

Cauchy =

Xi = Yj

 Banded, Pick, Schur-Cohn, Routh-Hurwitz, Bezoutian, ...

* Controllability, observability, impulse response matrices for state-space
descriptions, ...



Structured Matrices: Implicit

If A, B, C, D are all (explicitly) structured matrices, we
would like the same to be true for various composﬂes of
these matrices that are often encountered in
applications, e.g., the following that arise in least squares
problems:

A1, AB ,(A*A)"1A,D — CA™B

The composites unfortunately do not generally inherit the
explicit structure of their constituent matrices. For many
classes of matrices, this common structure turns out to
be Displacement Structure, which can be exploited to
design fast algorithms.



Application to Cell Phones

“It might interest you to know that part of my work here at
Nokia involves the implementation of a pseudo-inverse of a
Toeplitz structured matrix in hardware. We are using a
version of displacement structure based algorithms with
proprietary improvements for fast, parallel realization of the
same. It has been a very interesting learning experience to
consolidate the conflicting demands of precision, stability,
complexity and real-time constraints into a working receiver
structure.”

- Anand.Kannan@nokia.com



An Application in Communications

A Reduced-Complexity Partial-Interference-Cancellation Group
Decoder for STBCs

Rakshith Rajashekar, Student Member, IEEE , KV.S.Hari , Senior
Member, IEEE,and L.Hanzo, Fellow, IEEE

IEEE SIGNAL PROCESSING LETTERS, VOL. 20, NO. 10, OCTOBER 2013 92

Abstract—In this letter, we propose a reduced-complexity
implementation of partial interference cancellation group
decoder with successive interference cancellation (PIC-GD-SIC)
by employing the theory of displacement structures.

The proposed algorithm exploits the block-Toeplitz structure of
the effective matrix and chooses an ordering of the groups such that the zero-forcing
matrices associated with the various groups are obtained through Schur recursions
without any approximations. We show using an example that the proposed
implementation offers a significantly reduced computational complexity compared to
the direct approach without any loss in performance.
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Motivation — Toeplitz Matrices

Because a (symmetric) Toeplitz matrix

T =

a b c
b a b]
c b a

can be specified by n rather than n? entries, we can expect that linear equations with

T as coefficient matrix can be solved with O(n ) elementary computations. In fact this
is true as first shown by N. Levinson (1949)

However, consider solving Sx = b , where S is not Toeplitz, but is known to be the
inverse of some Toeplitz matrix. S will not be constant along diagonals, so the fast
algorithms for T cannot be used. However, since S |s not completely arbitrary, one can
imagine that with sufficient effort, we can get 0(n?) algorithms for S as well. In fact,
this is true.

So the question arises : If it is not the constancy along diagonals that S & T share,
what property do they have in common, that enables fast algorithms for both
matrices?

The answer is that they have the same Displacement structure.



Displacement Matrices

A preliminary definition introduces a displacement matrix.
VR=R—-ZRZ"

where Z is the shift matrix with 1’s on the first sub-diagonal and zeros everywhere else.

To see the reason for the name, first note that

0 0 O
[1 0 0‘
0 1 0
while
0 0 O
a b c
d e f]
Therefore,
a b c
R—ZRZ*=|d e f
g h i

which explains the name.

The displacement rank is the rank of the matrix VR
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The above definition is to be restricted to the case where R is symmetric, or in the complex case, self adjoint. In this
case, the displacement matrix will only have real eigenvalues and we can define the displacement inertia as {n,,n_}
the number of positive (non-zero) and negative eigenvalues. The displacement rank is then, n, + n_ .



The Toeplitz Case

When R =T = [c|l-_j|], we see that the displacement VT =T — ZTZ" has

the form
2 O 0 O
1] — [O CO Cl]
0 0 C1 Co
C2

C1
= lcl 0 O]
c, 0 O

which will have rank two ( or less ) no matter how large the rank of T is.

VT =

Co C1 C
cf Cy C
c, €4 C
Co

A simple exercise : Show that the displacement inertia of T is {1,1}



Some Composite Matrices

Let a Toeplitz matrix T = [‘é g], where {A,B,C,D} will also all be
Toeplitz.

Then,

Displacement rank(T) <2

Displacement rank(4) <2

Displacement rank(4A™1) <2

Displacement rank(AB) <4

Displacement rank(D — CA™1B) < 2

In general, it is true, and a very important fact that the Schur
complements inherit the displacement structure of the original matrix



Theorem 1

If a matrix has displacement rank 7, then standard 0(n?)
algorithms for a variety of associated matrix problems -
solving linear equations, inversion, triangular and orthogonal
factorlzatlon Schur complementatlon - can be replaced by
Ogn T) algorlthms and with more effort we can make them
O(rn logn).

Theorem 1:
rank(VR) =rank(VIR™1])
where [ is the reverse identity matrix.

The proof follows from easily proved block matrix
triangularization formulas and will be given later.



A Representation Theorem

Theorem 2:
Let

r

R—ZRZ* = inyi*

1
where, x; and y; are n X 1 vectors and r is the displacement rank. Then,

r
R= L)L ()
1
where L(x) = a lower-triangular Toeplitz matrix with first column x.

Corollary:
When

R=T = [c_j]
a symmetric Toeplitz matrix,
T = L(x)L"(x) — L(y)L*(y)

where x* = [CO C1 Cn]’ y* = [0 Co Cn—l]-

Moreover, by Theorem 1, T~ will have the same form, but with different x and y:
T~ = L(a)L*(a) — L(b)L*(b).

With a little more effort, we can specify the {a,b}, thus obtaining a very simple proof of a famous result of
Gohberg and Senencul.



An Application of Theorem 2

First check that

x; 0 07
aLl(x)=[a1 a; az]|x, x; O
X3 X2 X1l

is the convolution of the vectors a and x.

Since convolutions can be carried out by FFTs, this can be
done with O (nlog(n)) computations.

In signal detection problems, and in fact in several statistical
calculations, we often need to compute the quadratic form
a*Tla. If we ignore the displacement structure of T~1, this
will require 0(n*) computations but using the displacement
structure of T~1, we see that we can do this with 0(nlog(n))
computations, a very great reduction when n is large.



Proof of Theorem 2

Let

R3 — ZR3Z* - xy*
We can solve this equation by successive substitution and the fact that Z* is identically
zero (Z is a nilpotent matrix):

R3 — ZR3Z* - xy*
IRy Z* — 7R, 7% = Zxy*Z*
Z2R,Z* — 73R, 7% = Z2xy*Z*°

Adding these three equations and using Z> = 0 gives:

Ry = xy* + Zxy*Z* + Z2xy*Z*

xg 0 01y Y2 Y3
= [Xz x1 O[O0 ¥y1 ¥
X3 Xo X4 0 0 V1

= L(x)L*(y)



Proof of Theorem 1

First derive (or just verify), the useful block triangularization formulas

- =l I Al

=[z*1{e—1 (I)Hg R‘l—OZ*R‘lz][Z*I{?‘l (1)]

*

Since the block triangular matrices are non-singular, the triple products define congruent matrices (Now
recall our assumption that R = R*). Since congruence preserves inertia and therefore, also rank, we
have that rank

rank(R — ZRZ*) + rank(R™1) = rank(R) + rank(R™* — Z*R™12).
Since rank(R) = rank(R™1), we have

rank(R — ZRZ*) = rank(R™' — Z*R™'Z) = rank(IR"*] — ZIR™*])
where [ is the reverse identity matrix and this completes the proof.

( Note that scalar Toeplitz matrices and their inverses are persymmetric, so IT~1[ = T~1.)

Very important remark: Note that the form of Z does not enter into the proof. So, Z can be replaced by
an arbitrary matrix, say F. However for the theory, we generally require that F be lower triangular.

This fact is very useful in studying the displacement structure of composite matrices.

We now proceed to describe fast algorithms for triangular matrix factorization, a key ingredient in the
solution of problems in many different fields. We will need one more definition.



Generators of Structured Matrices

 We mention again that the displacement of an n X n Hermitian
matrix R was originally defined in the late 1970s as

VR =R —ZRZ"
* When VR has low rank, then R will be said to be a structured

matrix. Now note that whether r is low or not, we can non-uniquely
factor VR as

VR=R—-ZRZ" = GJ]G"
where | = (I D —1I ) is a 5|gnature matrix that specifies the
dlsplacement inertia of R,andGisn Xr

* The pair {G, ]} is called a generator of R. Note that G has rn
elements as compared to n? in R, and usually r < n.

e This is the main point about structured matrices: use the generator
matrix G, instead of R, in order to reduce algorithm complexity.



e Consider again the symmetric Toeplitz matrix,

with cp = 1.

e [t is easy to verify that

1

C1




A major result concerning such structured matrices is that the
successive Schur complements of R, denoted by R;, inherit the same
displacement structure:

B —ZRZ* =G0

Moreover,

e There is an efficient (Generalized Schur) procedure for computing

the successive {G;} from the original G.

e This procedure also checks whether R > 0.




Generalized Schur Algorithm: G; — G41:

X

4 ; shift
X

where ©; such that ©;J0; = J is chosen to null out all but the first
entry of the top row of Gj:

- 3

0
Git1

= G{0;

Generalized Schur Test: If these recursions can be performed for all ¢,
then R > 0.




e The entries of L in the factorization R = LDL™ are given by

: |
l; = 5Gi6; [ ] ,  di =62
; 0

e Moreover, we can associate a first-order system, in state-space
form, with each step of the algorithm by combining the
expressions for {G;1,1;}:

{Gis+1,G;}: regarded as output and input of the system.
{l;, Zl;}: regarded as future and current states.




In many situations, however, it is necessary to use a more general
definition of displacement structure.

Consider, for example, the extended block matrix M

ey |
i

with a Toeplitz T.

It is easy to verify that M has displacement rank 4 with respect to
M — Zs,MZ,5,,, and displacement rank 2 with respect to
M— (Z,® Z,)M(Z, ® Zn)".

This, and many other examples, motivate the introduction of a general
displacement defined by

VR=R - FRF* =GJG”

where F' is lower triangular, with diagonal entries { f; o and
J = (I, ® —1;). (We limit ourselves in this talk to positive-definite
matrices R and |f;| < 1).




e The recursions can also be extended to this more general
structure. In this case, the successive Schur complements of R
will also inherit similar displacement structure.

That is, if R; is the Schur complement of the leading 7 x ¢
submatrix of R. Then R; also exhibits displacement structure of
the form

R —EBRF =G0

Here, F; is the submatrix obtained after deleting the first 7 rows
and columns of F', and the generator GG; satisfies a recursive
construction that we now describe.




|

p—1
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q
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e Each step of the algorithm now leads to

z—fj O ]

1—-zf7

0 I

e As before, we can introduce the feedforward cascade:

@11(2) @12(z) j|

O(z) = ©0(2)01(2) ... On(z) = [ ©21(2) ©O22(2)

O3 (2)021(2) 922 (2)

o [ ©11(z) — O12(2)O055 (2)O21(2) —012(2)05,(2) }

which maps Schur (contractive) functions to Schur (contractive)
functions.

e This extension from Z to F allows us to nicely solve rational
interpolation problems, as we now briefly demonstrate.




Displacement Structure Theory

Over the last 35 years, the initial ideas have been developed into an extensive theory of
Displacement Structure. See for example, the survey paper, Kailath & Sayed SIAM review
(1995).

Along the way several quite unexpected mathematical results were encountered and used, and
some new ones developed. For example, a key reference is a 1917 paper by the famous
mathematician, Issai Schur, on what would seem to be a purely mathematical topic:
characterizing "power series that are bounded in the unit disc". Displacement Structure theory
heavily builds on our generalizations of an algorithm found in that paper, which we have called
Generalized Schur Algorithms.

While it can happen that fast algorithms lose some measure of numerical stability due to the
accumulation of round-off errors, numerically stable variants of these algorithms can often be
found.
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Thank you for your attention



The following two results play a significant role in the developments to
follow:

e If Aisinvertible and A = D — CA !B then

A B A
SO L C

| S
0. A

A7t 4 B~

The matrix A is called the Schur complement of A. That is, we can
induce a zero column and row via a rank-one modification, or Schur
complementation (or Gaussian elimination).

e Given two n x m (n < m) matrices A and B such that

AJA* = BJB”* | is of full rank, for some m X m signature matrix J,

then there exists an m x m J—unitary rotation © (©J©" = J) such
that | A = BO

The key factorization algorithm in our analysis is based on combining

Gaussian elimination with the notion of displacement structure.










Gaussian Elimination

The (misnamed) Gaussian elimination technique solves
Ax = b

by using elementary operations to bring A to upper
triangular form.

Von Neumann pointed out that this was equivalent to
factoring A as LDU, with L lower triangular, U upper
triangular, both with unit diagonal, and D diagonal.

(Ax = b gives Ux = D~1L71b)

Such factorizations play an important role in humerous
problems. This seems trivial, but see the next slides.



Wiener-Hopf Equation

The story begins in 1931, when the astronomer Eberhard Hopf
paid a visit to the summer home of the already famous
mathematician Norbert Wiener of MIT. As was his wont,
Wiener enquired of his guest what the most outstanding
problem was in his field. The response was that no solution
method was known for an integral equation put forward by
the astronomers Milne and Schwarzschild to characterize
certain problems of radiative transfer in an atmosphere of
infinite height:

me(T)K(t — 1)dt = g(t), t>0

where K(-) and g(-) are known and w(-) is to be found.



The Wiener-Hopf Technique

At breakfast the next morning Wiener presented a solution! It
was not quite correct, but the mistakes were easily fixed, and the
paper on it was published by Wiener and Hopf in 1931.

So unexpectedly brilliant was the solution that the equation
itself came to be known as the Wiener-Hopf equation and
the solution method as the Wiener-Hopf technique.

The critical idea in the Wiener-Hopf technique requires
something called spectral factorization, which is an infinite-
dimensional version of writing a matrix as a product of upper-
and lower-triangular matrices.



Solving Linear Equations

Motivation:
Consider the problem of solving the system of linear equations
Ax = b
where A is a known n X n matrix, b is a known n-vector, and x is an n-vector
of unknowns.

There are many libraries of computational algorithms for this problem.
However, for general matrices A the computational effort is 0(n), which is
prohibitive for the large n found in many interesting problems. How do we
get around this?

The answer is that we often make simplifying modeling assumptions on the
underlying physical situations, idealizations such as homogeneity, isotropy,
time-invariance, infinite duration, finite bandwidth, etc.. These lead to special
structures for the matrix A, which can allow the computational burden to be
reduced to O(n?) or O(n logn) or even O(n).



Fast Algorithms for Linear Equations

The standard way of solving linear equations Ax = b is by the method
mistakenly called Gaussian elimination (probably first used by the Chinese in
xxx and next apparently by Newton in xxx).

The processes to use elementary operations on the rows of the matrix 4 to
reduce it to upper triangular form from which the components of the solution
can easily be found by successive substitution.

It was pointed out by Von Neumann and repeated in Turing 1949 with
acknowledgement that this procedure amounts to triangular factorization of
the matrix A. One form is

A=LDU

where L(U) is a lower(upper) triangular matrix with unit diagonaland D is
diagonal.

Therefore fast algorithms for solving linear equations are essentially
equivalent to fast algorithms for triangular factorization of matrices. We shall
show how displacement structure can be exploited to obtain such fast
algorithms.



Displacement Generators

We start with the definition of the displacement

VR=R—-ZRZ"
Then r = rank(VR) is called the displacement rank. When r < n (the size of the matrix R), we say that
the matrix is structured.

Going forward, we shall, for a considerable period of time, assume that R is hermitian. Then, we can
represent the displacement inertia of R by the matrix

] [Ip 0 ]
0 -l
where p(q) is the number of non-zero positive(negative) eigenvalues of VR. Then we can write (non-
uniquely)

R—ZRZ" = GJG™

where the n X r matrix G is called a generator matrix and the triple {Z, G, J } is called a Generator of R.
Note that G will have rn elements as compared to n? in R.

This is the main point about structured matrices work with the generator in place of the matrix R in
order to reduce the operation count of associated (esp. factorization) algorithms from 0(n?) to 0 (rn?)

The reason G is not unique is because we can always replace it by GO, where 0 is J-unitary, ] = /0"



Significance: If a matrix has displacementrank , then standard 0(n?) algorithms for a
variety of associated matrix problems - solving linear equations, inversion, triangular
and orthogonal factorization, Schur complementation, ... - can be replaced by 0(n?a)
algorithms where « is the displacement rank.

Along the way several quite unexpected mathematical results were encountered and
used, and some new ones developed. For example, a key referenceis a 1917 paper by
the famous mathematician, Issai Schur, on what would seem to be a purely
mathematical topic: characterizing \power series that are bounded in the unit disc".
Displacement Structure theory heavily builds on our generalizations of an algorithm
found in that paper, which we have called Generalized Schur Algorithms.

While it can happen that fast algorithms lose some measure of numerical
stability due to the accumulation of round-off errors, numerically stable
variants of these algorithms can often be found



Schur Complements

. A B
Given M = [C nl
The Schur complement
of AinMisD —CA™'B
of DinMisA —BD™1C
Schur complements have many nice properties (see
a famous review paper by Cottle.)

They play a major role in triangulizing matrices, an
operation of great importance in Matrix theory.



Block Matrix Triangularization

[X 1] é g]z-XAA+C XBB+D]

_[A 5 ]
0 D—CA'B
by choosing X = —CA™1. Similarly, we can see that
[A —A 'B] _ [A 0 ]
0O D-— CA 1B 0 | 0 D—CA™ B
-1 ) i
| 110 1 Y1 I —Y
Using [X 1] ~l-x 0]' [0 11~ 1o 1]

will give us one of the identities on the previous page



