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URING a morning operation against

the Taliban in Afghanistan’s Helmand
province in 2010, a British army contingent
halted before a narrow pass reckoned to be
mined with improvised explosive devices
(1EDs). The day before, two of the unit’s ar-
moured vehicles had been destroyed near-
by by 1EDS (the crews were uninjured). The
commander, Lieutenant-Colonel Matt Ba-

Clearing landmines: Despite
sophisticated new technology many
explosive devices are still cleared by
hand with the help of trained
animals

clearing mines manually.

plastic. They might contain only one metal
component: a firing pin smaller than a
sewing needle, says Eddie Banks, a retired
deminer and author of a book on land-
mine design. But some hand-held detec-
tors are sensitive enough to detect even a
buried scrap of silvery paper from a ciga-
rette pack, says Alex van Roy of the Arme-
nian government’s Centre for Humanitar-

zeley, fired a rocket that pulled 200 metres ____Humanitarian deminine, as post-con-__ ian Demining and Expertise, a new body

of a fat, coiled hose out over the route
ahead. Packed with about 15 tonnes of ex-
plosives, it detonated upon landing with

McClellan, Georgia Tech

flictmine clearance is known, is carried out
by the army, non-governmental organisa-
tions (NGOs) and commercial companies.
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clearing mines in Armenia that remain
after a war in the 1990s with Azerbaijan.
Such machines cost about $4,000 and
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f-k Filtering

4 2-D SPECTRUM ANALYSIS 0
e FREQUENCY-WAVENUMBER SPECTRUM DISPLAYS WAVES
s(z,t) «—— S(k,f) or S(k,w)
K "f-k" SPECTRUM
k
CONSTANT FREQUENCY .
Sample In
o & Space with an
7 N
A~ 7 Array of Sensors
7 and in Time
-
AT A CONSTANT FREQUENCY
THERE ARE VERY DISTINCT PEAKS
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1-D to 2-D Transformation

Make 2-D FIR Filters
From 1-D FIR Filters
(Optimal Equiripple)
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Actual 2-D Frequency Response
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Well Logging (1980’s)
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Acoust

Ic Dispersion Curves
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A e WAVE PHYSICS:
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P e RESIDUES —> PROPAGATING MODES
A e BRANCH-CUTS — BODY WAVES

A — THEREFORE, LOOK FOR POLES/PEAKS in A(k,w)

RARA

TRANSMITTER
ELECTRONICS

DN

AT AYAL
AT AT AL
R
©1995 J. H. McClellan

McClellan, Georgia Tech

June 2014




4 5.00

0.00 1.00 2.00 3.00 4.00
TIME (MS)

Fig. 2. TYPICAL RECEIVED SIGNALS. Casing arrival at 57 usec/ft. dom-
inates the early part of the waveform. Formation compressional slowness = 70
pusec/fL., shear slowness = 138 usec/ft, sampling rate = 100 kHz, spatial separa- 10
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Exponential Model vs. space

4 PRONY WORKS FOR WIDEBAND ARRAYS &

e COMPUTE DFT OF EACH CHANNEL:

S, f)=FFT{s(¢,t)} (FFT versus t)
e AT EACH FREQ, DETERMINE |[EXPONENTIAL | MODEL:
(NARROWBAND)
P .
S(4, f) = Y Gi(f)e(outiznipit (=0,1,2,..., -1
=1

p; is slowness, f is frequency

e RECEIVER INDEX is DENOTED by ¢

\ ©1995 J. H. McCIeIIarJ
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Dispersion: velocity vs. freg

" RELATING ROOTS TO SLOWNESS

e ROOTS of LINEAR PREDICTION POLYNOMIAL A(z)
GIVE SINUSOIDAL FREQUENCIES

e FOR THE ARRAY CASE, a PURE SINUSOID vs. DISTANCE (¢)
sl ~ YG et

WHERE ¢ IS SAMPLE INDEX vs. SPACE; AND "w;" IS SPATIAL FREQ

e EACH ROOT of A(2) is z (COMPLEX-VALUED)

27

o “SLOWNESS" of i WAVE (p;) VARIES vs. f
—  p;(f) IS “DISPERSION RELATION"

\ @©1995 J. H. McCleIlarJ
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Fig. 2. TYPICAL RECEIVED SIGNALS. Casing arrival at 57 usec/ft. dom-
inates the early part of the waveform. Formation compressional slowness = 70
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SPATIAL FREQUENCY, (CYCLES/FT)

FREQUENCY (KHZ)

Fig. 4. CONTOUR PLOT OF FOURIER SPECTRUM. Only frequencies from
0 to 25 kHz are shown since the effective bandwidth of the signals is about 20
kHz.
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Fig. 7. SLOWNESS-FREQUENCY PLOT FROM PRONY ROOTS. Slowness
from 5 roots of Prony model computed at each frequency. Magnitude of complex 14
MCCIe”an’ Geor( amplitude factor from Prony model is plotted on a log scale.



“Sparsity” Dispersion curves

SPARSITY PENALIZED RECONSTRUCTION FRAMEWORK FOR BROADBAND DISPERSION

EXTRACTION
Shuchin Aeron, Sandip Bose and Henri-Pierre Valero Venkatesh Saligrama I CASSP-ZO]-O
Schlumberger-Doll Rescarch, Cambridge, MA Boston University, Boston, MA
oo M(F) | |
S(l,t) = / Z Sm(f)e—("LZWk-m(f))Zie%??rftdf (3)
40 m=1
where Si (f) = S(f)agn(f) and the approximation error is absorbed MOdel th at can
in the noise. Under this model, the data acquired across the receivers
can be written in the frequency domain as, be enumeratEd
(Y1(f)] [ Su(f)] [Wah)]
Ya(f) Sa(f) Wa(f)
- [Vl(f)z'“vvll/f(f)] . + . (4)
Y7L (f) |Sa ()] LWL(f)
N . N —— ™ y .
Y () S(f) W(f)

where v;(f) = [e-2mkilf)zn emi2rki(£)20]T and Yi(f), Sy(f)
and W;(f) denote the Discrete Fourier Transforms of y((I,t), s(l, 1)
and w(l, t) respectively. In other words the data at each frequency is a
superposition of M ( f) exponentials sampled at the receiver locations
Zly ey ZF,s
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Fig. 1. Schematic showing the generation and acquisition of acoustic
waves by the sonic tool in a fluid filled borehole on the left. The
corresponding dispersion extraction problem consists in using the array
waveform traces collected at one depth as shown on the top right to
estimate the dispersion curves shown on the bottom right.
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Schlumberger-2010 (3)

dispersion curve is parameterized by its phase and group slowness.
This is depicted in Fig. 2(a). Without loss of generality we assume
that the number of modes M (f) is the same for all frequencies in
the band of interest. For the sake of brevity we denote this number
by M. Under the linear approximation of the dispersion curve(s) for
the modes, the sampled exponential at a frequency f corresponding
to a mode can be written in a parametric form as

e_iZW(k7n+kirz(f_f()))zl ]
=127 (ko +k,y, (f=f0)) 22

vin(f) = _ (6)

'I
e~ 127 (km 4k, (f=fo))zL,

form = 1,2,...,M [, fo ¢ F. Clearly, over the set of frequencies
f € F, the collection of sampled exponentials (for a fixed m)
{vm(f)}scr as defined above corresponds to a line segment in
the f-k domain thereby parameterizing the wavenumber response of
the mode in the band in terms of phase and group slowness. In the
following we will represent the band F by F which is a finite set of
frequencies contained in F,

P AN foidn, } CFifoc F (7)
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Fig. 2. Fig. 2(a) depicts the linearization of the dispersion curves in
the f-k domain around fo. Fig. 2(b) depicts column sparsity of the signal
support in P resulting from the sparsity in the number of modes in the
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Schlumberger-2010 (5)

FFT Magnitude
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Fig. 3. (a) Figure showing the frequency spectrum of the modes. Note the frequency overlap. (b) Figure showing the data in the band 3.7 kHz - 5.2
kHz. Note the significant time overlap in the modes. (c) Dispersion Extraction results in the given band. The thin solid lines are the true dispersion curves
for the two modes. The pentagrams are the estimates of the phase slowness at the center frequency of 4.5 kHz as obtained using the proposed method.
The thick dashed lines are the corresponding estimated dispersion curves in the band. The blue and green circles are the dispersion curves obtained
using the narrowband Matrix Pencil method of [3]. Note the superior performance of the proposed method over the Matrix Pencil based method.
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URING a morning operation against

the Taliban in Afghanistan’s Helmand
province in 2010, a British army contingent
halted before a narrow pass reckoned to be
mined with improvised explosive devices
(1EDs). The day before, two of the unit’s ar-
moured vehicles had been destroyed near-
by by 1EDS (the crews were uninjured). The
commander, Lieutenant-Colonel Matt Ba-

Clearing landmines: Despite
sophisticated new technology many
explosive devices are still cleared by
hand with the help of trained
animals

clearing mines manually.

plastic. They might contain only one metal
component: a firing pin smaller than a
sewing needle, says Eddie Banks, a retired
deminer and author of a book on land-
mine design. But some hand-held detec-
tors are sensitive enough to detect even a
buried scrap of silvery paper from a ciga-
rette pack, says Alex van Roy of the Arme-
nian government’s Centre for Humanitar-

zeley, fired a rocket that pulled 200 metres ____Humanitarian deminine, as post-con-__ ian Demining and Expertise, a new body

of a fat, coiled hose out over the route
ahead. Packed with about 15 tonnes of ex-
plosives, it detonated upon landing with

McClellan, Georgia Tech

flictmine clearance is known, is carried out
by the army, non-governmental organisa-
tions (NGOs) and commercial companies.

June 2014

clearing mines in Armenia that remain
after a war in the 1990s with Azerbaijan.
Such machines cost about $4,000 and
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Detection of Subsurface Objects

Why Is important?

Buried Landmines and
Improvised Explosive Devices
are a Horrendous Problem &%

100 million landmines buried
throughout the world

26,000 injuries and deaths per \
year

IEDs wound and kill as many
soldiers as combat

Unexploded Ordinance

Tunnels

Utilities

Treasure Autonomous
McClellan, Georgia Tech June 2014 Robotic System 21




Detection of Subsurface

Subsurface detection methodologies
Ground Penetrating Radar (GPR)
Seismic
Electromagnetic Induction (EMI)
Manual probing
Nuclear Quadrupole Resonance (NQR)
Biological
Infrared/Hyperspectral
Electrical Impedance Tomography
X-Ray Backscatter
Neutron Technologies
Electrochemical Methods

McClellan, Georgia Tech June 2014 22



Detection of Subsurface Objects

Given the success of medical
Imaging and terrestrial radars,
finding buried objects would not
seem to be difficult

Robust methods for finding /\ /\

subsurface objects in general have

proven to be very difficult

Why is it so difficult?
Cluttered environment

Inhomogeneous soil
False targets

Only access to surface
Makes imaging very ill conditioned
Measurement time restrictions

McClellan, Georgia Tech June 2014 23



Drs. Waymond Scott & M. Alam

Spectrum Analysis of Seismic Surface Waves

Separation of seismic waves

New Prony based spectrum analysis technique
Processing results and applications

Locating Buried Targets (landmines) by using Seismic Waves
Waves separation and ID by vector-IQML
Imaging algorithm

Optimal maneuvering

24



Prototype Seismic Mine Detection System lﬂ«‘

Interaction of Rayleigh wave with mines can be used for detection and

localization of mines

Seismic Source

(Electrodynamic Shaker,
20-100 Lbf)

Array Neighbor

\

Radar Sensor
(8 GHz, Focused,
Phase Modulated,
Homodyne Demodulation,
~1 nm sensitivity)

W. R. Scott Jr., J. S. Martin, and G. D. Larson,
“Experimental model for a seismic landmine detection
system,” IEEE Trans. Geoscience and Remote Sensing,
vobh=39, pp. 1155-1164, June 2001.

Buried Mine



AP Mine: 1.3 cm deep

Raw Measured Data

OMine
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Elastic Wave Sources and Sensors
Develobpment

Electrodynamic Shaker » Source

Signal
Ground Contacting
o Sensors |
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Air acoustic source o 1

Radar Sensor
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Passive air
acoustic sensor
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Ultra§oni Sensor
v N

Electrical arc source
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Multi-Channel Extension u

i

Each channel can be modeled individually and then match
them in the (k, w) domain

Determine one model for two channels simultaneously
Same pole (k), different zeros (A)

Derive and use multi-channel IQML (multi-channel
extension of Steiglitz-McBride)

Se(x,w)

S(z,w) = Sz(z,w)

P . |
> Amp(w)egk’p(w):c
p=1

&

P :
D Azp(w)ejkp(w)g;

p=1 _




Two Channel Space-Time Data

Distance from source (cm)
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Spectrum Analysis and Polarization

Complex amplitude for “x” and “z” are used

to create polarization ellipse at each (k, w)

Phase Velocity (ml/sec)

4 ] ] | | | ] ]
% 357 714 1071 1428 1785 2143 2500
Frequency (Hz)
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A Sixth Sense

32
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Landmine Detection

1877: Metal Detector Patent, Alexander Graham Bell

1941 patent: Jozef Kosacki, Polish signal officer
stationed in Britain
~5 kHz. Could be carried by soldier (14 kg)

France and US wanted vehicle mounted system
1940, Doll had an (EMI) prototype running in France
Fled France and escaped back to the US
Had lived and worked in Houston 1928—1938 as Schlumberger grew in US
1940: US started development of new mine detectors
Doll sets up EMR and spends 50% time during WWII

While continuing to serve as director at Schlumberger (SWSC)
1943: won field trial vs. “Prairie Dog”
Delivered 505 systems by end of war

McClellan, Georgia Tech June 2014 34






Anecdotes

There were also lighter moments. As the orders from the army were

tilled, Jeeps with the mounting frame installed could be seen on the
grounds of SWSC in Houston (where EMR was located). When neigh-
bors asked about the curious-looking devices, the official explanation
was that SWSC was developing a new plow for clearing snow from
highways. It had not snowed in Houston in years.

During one trial of an early prototype, an army general visiting
EMR insisted on riding in the vehicle. Doll, who was driving, asked

the general to fasten his seat belt. The general just glared. Doll started

Automatic Braking

driving. When the vehicle approached the first dummy mine, the auto-
matic braking system engaged, bringing the Jeep to an abrupt stop. The
general ended up on the hood.

Jeep-mounted mine detector, AN/VRS-1, produced by EMR for The Engineer Board (History

of the Development of Electronic Equipment - | - Metallic Mine Detectors, The Engineer
Board, U.S. Army Corps of Engineers, 1945).
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Henri Doll

Henri-Georges Doll in uniform at Ecole Polytechnique in 1923

Henri-Georges Doll around 1945,

McClellan, Georgia Tech June 2014




Ground Penetrating Radar

GPR senses changes in
the permittivity and
conductivity of the
subsurface

Advantages

Senses almost all targets of
interest

Complements EMI (metal
detectors)

Very fast

Disadvantages
Many sources of false alarms

McClellan, Georgia Tech June 2014 38



Sparsity-1
‘overy from Undersampled Data

o fis S-sparse in W and |f| =N

o Select M measurements uniformly at random
M > 2(W, ) - S log N

o Solving
f = argmin ||f||1 s.t. y=oVf

will reconstruct f exactly with overwhelming probability
o (W, ®d) is the coherence between W and ®

McClellan, Georgia Tech June 2014 39



Sparsity-2
‘pressive Sensing

Signals are generally noisy. A realistic model for the measurements

y=®0x+2z z iidN(0,c?)

o If the Restricted Isometry Property holds

f=argmin|f|ly s.t. ||AT(y — Af)|ls < eno.

@ A= OV and selecting epyy = /2log N makes the true x
feasible with high probability.

McClellan, Georgia Tech June 2014 40



Dr. Ali Cafer Gurbuz: GPR-1

Ground Penetrating Radar (GPR)

1X 1k

®
Object
Impulse GPR Stepped Frequency GPR
@ Works in time domain o Greater measurement accuracy
@ Simpler design and low cost @ Operating frequency range can

be adjusted

o Greater dynamic range and
lower noise

McClellan, Georgia Tech June 2014 42



Gurbuz: GPR-2

GPR Data Model

We assume that the received signal reflected from a point target at
position p is a time delayed and scaled version of the transmitted
signal s(t)

Gi(t) = As(t —7i(p))

Time(s)

Planar Ground
Boundary ds

Xp,Yp

McClellan, Georgia Tech June 2014 43



Gurbuz: GPR-3

Creating a dictionary for GPR Data

A discrete inverse operator can be created by discretizing the
spatial domain target space and synthesizing the GPR model data

for each discrete spatial position.
»" GPRati"

aperture point

J

Nl EE BN BN
[
EN BN BN EE
|

" column

T

GPR Model
Data

Target Space

/’

i" entry

s [T MM ITTTTTITT]

Enumerate responses
from all possible targets

Dictionary: ¥;

s(t — (7))
Is(t = 7i(m;))ll2

G=Vib [V =
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Gurbuz: GPR-4

Frequency Domain Imaging - 1
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Gurbuz: GPR-5

Frequency Domain Imaging - 2

Depth(cm)
&
Depth(cm)
&
Depth(cm)

n
=

n
o

30

% 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
X(cm) X(cm) X(cm)
BP w/ all freq. data BP w/ randomly CS w/ randomly
selected data selected data
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Gurbuz: GPR-6

Random Spatial Sampling
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Sparsity Concepts

Enumerate all possible outcomes, and
then pick the best one(s)

Enumerate from a model
Sampling density of parameters
RIP = more samples not necessarily better

Pick the best, but not exhaustive search!

Use L, optimization to pick the answer
Often group sparsity applies

McClellan, Georgia Tech June 2014 49



EMI Sensing of Buried Targets

EMI sensor will sense both
Magnetic susceptibility x of the soil
Magnetic polarizability M of the
targets

Measure R but we want

information about the subsurface

Target

Type
Spatial location
Spatial orientation

Saoil
Magnetic Properties
Voids
Consistency
How to get this information?
Very accurate measurements of R
Understand soil properties
Clever signal processing/inversion

McClellan, Georgia Tech

Transmitter

>

I ' Vr

Receiver

Soil
x <<1
Target‘
June 2014 50



Sensor Development

The hardware must quickly and
accurately measure the response
of a target to meet the goals
Current systems

High dynamic range

Wide bandwidth: 300 Hz to 90 KHz

21 logarithmically spaced frequencies

30 to 90 Hz update rate
Uncoupled from the soill

SmaIISingIeEMI ‘

ey el
N e S

McCle Ia, orgia 'fch | June 2014 “ 51



EMI System

e Using a frequency-domain wideban

® Tc(w,ls;lt,Ot) — ng(lS _ lt

(ls - lt)

— w frequency

— C constant defined by characteristics of the transmit and receive coils
— g. magnetic responses generated at the receive coil, ¢

— f magnetic responses generated at the transmit coil

— R rotation matrix
Enumerate responses
from all possible targets ?

— o0; 3D rotation angle of the target
— M magnetization of the target

e If this response is built for every possible target, it scales a

o Wi(w,ls;le,00) =gl (Is — L) R (0r) M (w)R(0¢) f(ls — Lt)

Krueger, Georgia Tech 53



Ground Ground

o

Landmine Dipole Dipole

)
-5
@
-
-
Q.
+
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Magnetization

e Fully enumerated frequency model

— W (w,lsl,00) =gl (Ls — 1y)
N¢

1. M(w)= 3 Dpp(w, ()N
k=0

R (0:) M(w)R(00))f (Ls — Lt)

N¢

— \Pg(w,ls;lt,ot) = > Uf(ls;ltaotJAk)pk(w?Ck)
k=0

e Now remove the frequency response and image the location and
orientation dependent part

— vF(gl,00) = gl (Le —1)T (0, Ap) F(ls — 14)

T tq ty tg
1. T(og,Np) =R (o)A R(oy) = | tg tgy 15
tg ts t3

— vE(lsil,00) = Pl (L 1)t

Tensor (6 params) instead of
enumerating rotation angles
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EMI Detection Algorithm

e A large, block-structured tensor T' can be made which contains the
approximated tensor at all /V;, target locations

B Tl(Ot,Ak) 0 0 0 ]
0 TQ(Ot,Ak) 0 0
T =
0 0 - :
i 0 0 o T'ny, (0, Ag)

e T is low-rank, because the number of targets in a certain space will be
sparse

“Tensor Amplitude”
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EMI Detection Algorithm

T must be accurately extracted

The properties of T' allow for the use of semidefinite programming (SDP)
min tr(T)
s.t. T ~ 0
| m— Pt [[2< €

Trace is a convex relaxation on rank minimization

Requires an efficient solver
3]
Lo

>
|

len,,
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EMI Simulation

e Only two spatial dimensions, l+ = (y¢, 2¢),

— Ny, =7 at 2cm spacing

— N.,=8 at lcm spacing

e Only two angles, or = (at, Bt).
e Single target experiment

— 1, = (0,6.5) cm

— A = diag(0.5,0, 1)

— o, = (0°,22.5°)

— Target is represented by a tensor

[ 0.57 0.00 0.17
T= | 0.00 0.00 0.00
0.17 0.00 0.92
T
0.92  0.38 05 0 0.92  0.38
= 0 0 [ 0 1] 0 0
—0.38 0.92 —0.38 0.92
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(cm)

it

EMI Simulation

Orientation Vectors
1 |

—  Actual
— Estimated | |

=
[0
T

<
=
T

J? -
3.

I
|
I
|
I
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
Hey 4
|
|
|
I
!

—0.6

y; (cm)

—0.8

-1 ! ! ! !
-1 -08 —-06 —-04 —-02

T =
]
(]
=
=
=
(=]
o=
oo
=
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Tlt (Ot7 A‘) —

Krueger, Georgia Tech

EMI Simulation

o O o O o O

0.57 0.01 0.20
0.01 0.00 0.00
0.20 0.00 0.89

0.90 0.42
0.03  0.00 [
—0.42  0.90 |

cCoOo oo oo
=
—
QS
L
>
S—

0.48 0
0 1

|

0.90
0.03

| —0.42

0.42
0.00
0.90
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EMI Storage Requirements

o N;, = 21x31x26 = 16926
o le = 201
e Using full orientation enumeration with 5 degree resolution

— No, = 18x36x36
— N, is the number of types of symmetry, approx 3.
— 3N, XNy, Ni, Ny = 603x(1x109) : approx 900 Gbytes

e 'Tensor representation storage

— 3N;,x6N;, = 603x(1x105): approx 250 Mbytes
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| Background and Objectives |

HYDRAULIC FRACTURING

O Hydraulic Fracturing?
+ Low permeability
«» Stimulation by creating fractures
+ Water & sand to stop collapse

—0m

|1,000m
[ Fracture = Microseismic source ]

O Why do we want to know?
+ Productivity
++ Opening, shearing, effectiveness
¢+ Event detection and sync.

)

+ Saditives
d keeps
sandkeshn

Fracturing

O What do we want to know?
+» Hypocenter
+» Moment tensors
+ Origin time

L 4,000m

O What do we measure?
+ Displacement traces
+» Geophone arrays

Q Our Goal?

v' Fast & accurate recovery of source
parameters




The Basic Idea

0 What is missed? Does it help?
+ SPARSITY (in spatial domain)
% Incorporate in the model: Sparsity-Aware!

Acquisition Setup

Z axis
S *  Grid Points (GPs) |
: i‘ * Geophones :
—-2750 ' T ‘ : o
-2800 | I e ‘
_2850 | *i**i*i**::#**#** **ﬁe
~2900 o 9% o ********:*i*** : g
*
1800
y axis

X axis 1800 1300




Green’s Functions: Ray Tracing

Acquisition Setup

Z axis
*  Grid Points (GPs) |
: i : : *  Geophones
-2750 - ) ‘ ‘ 0
-2800 | jg e .
} K ok
2850 | * **i*i**I*I#*i#i* 4
[ % : o *****#****#***‘ e
Pl G d 2900 ‘ o Rt ey g
Boundary d I -2950 - : % S EREEE
3 | -3000 - *
1800
' -3050 |
|
I -3100-!
1300

1500 y axis
Xp,YD 1500 1600 1400

X axis 1700 800”1300
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First Approach I

I Preliminaries I

O Moment tensor source model

M(t) = Ms(t)

U Displacement received from a tensor source

f

\

q

9,
un(x,t) = ZMpq(t)*a_C an(x7 C7 t) T)

0
= ZMpq S(t)*% an(x7 C? t? T)

. J




Second Approach I

15

I A practical constraint I

The validity and accuracy of the proposed approach relies on the knowledge
of the source time function:

w(x, ) l s(t)}dc Goo 5(1) % 7Gos o+ 5(1) % 7 G :ir
u, (1) = [500) # 5= Ge 8(1) 5 5=Go o+ s(1) 4 Goe| |
u.(x.1) _s(t)*%(}m s(t)*%(}m s(t)*%Gzé
T ¥(x. & t7) L
m(¢)

[ Q Is there a way to eliminate this crucial need?

[ v Asparsity-aware framework blind to s(t)!




Second Approach I
I Modeling: Freq.-Domain I

Q@

8

3x1 e (%, o) oe, Goe 3¢, G
\ fby (X, U.Jq) E(wq) c. Gy;z: 3cy Gu.l:
i 0 G 9.G

[y (wg) ", -+ - s (wy)

K
- Zl‘ljl(glw wg’)Ts ‘IIQ(Ckv WQ)T’ e
k=1 -

w

W () owq)
16

3Mx1




| Second Approach I

17

I A novel estimator I

\ 4

3 M x 6N

[ O How can we handle Nr dictionaries and measurement vectors?

A novel estimator:

v’ Take the specific group structure into account
v" Take the common sparsity support in different frequencies into account

A
©

MG-LASSO — ar'g m(_%n Z [ (w,) — ¥ (

— [rh(wl), -

Ny

q=1

N
wq)[®]:,q\|§ + A Z | [@]6(n—1)+1:6n,:”2
n=1

~N

Accuracy (LS part per freq)

Group sparsity

) ﬁl(wa )]

Regularization




Recap

3-axis sensors everywhere

Tensor representation
Formidable Computation

Sparse Representations
Simplify Models

Compressive Sensing
Simpler Acquisition
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