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Ideal Fan Filter  
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f-k Filtering  
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Sample in 

Space with an 

Array of Sensors 

and in Time 



1-D to 2-D Transformation 
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Make 2-D FIR Filters 

From 1-D FIR Filters 

(Optimal Equiripple) 



Actual 2-D Frequency Response 
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Well Logging (1980’s) 
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Acoustic Dispersion Curves 
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12-channel Sonic Tool 
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Exponential Model vs. space 
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Dispersion: velocity vs. freq 
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12-channel Sonic Tool 
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“Sparse” freq-space spectrum 
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“Sparsity” Dispersion curves 
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Model that can 

be enumerated 

ICASSP-2010 



Schlumberger-2010 (2) 
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Schlumberger-2010 (3) 
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Schlumberger-2010 (4) 
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Constraint is 

Group Sparsity 

(Joint Sparsity) 



Schlumberger-2010 (5) 
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Detection of Subsurface Objects 

 Why is important? 

 Buried Landmines and 

Improvised Explosive Devices 

are a Horrendous Problem 

 100 million landmines buried 

throughout the world 

 26,000 injuries and deaths per 

year 

 IEDs wound and kill as many 

soldiers as combat 

 Unexploded Ordinance 

 Tunnels 

 Utilities 

 Treasure 
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Autonomous  

Robotic System 

PSS-14 

PSS-14 



Detection of Subsurface Objects 

 Subsurface detection methodologies 

 Ground Penetrating Radar (GPR) 

 Seismic 

 Electromagnetic Induction (EMI) 

 Manual probing 

 Nuclear Quadrupole Resonance (NQR) 

 Biological 

 Infrared/Hyperspectral 

 Electrical Impedance Tomography 

 X-Ray Backscatter 

 Neutron Technologies 

 Electrochemical Methods 
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TX RX

Detection of Subsurface Objects 
 Given the success of medical 

imaging and terrestrial radars, 

finding buried objects would not 

seem to be difficult 

 Robust methods for finding 

subsurface objects in general have 

proven to be very difficult 

 Why is it so difficult?  

 Cluttered environment 

 Inhomogeneous soil 

 False targets 

 Only access to surface 

 Makes imaging very ill conditioned 

 Measurement time restrictions 
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Drs. Waymond Scott & M. Alam 
 

 Spectrum Analysis of Seismic Surface Waves 

 Separation of seismic waves 

 New Prony based spectrum analysis technique 
 Processing results and applications 

 

 

Locating Buried Targets (landmines)  by using Seismic Waves 

 Waves separation and ID by vector-IQML 

 Imaging algorithm 
 Optimal maneuvering 
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Prototype Seismic Mine Detection System 

Interaction of Rayleigh wave with mines can be used for detection and 

localization of mines 

W. R. Scott Jr., J. S. Martin, and G. D. Larson, 

“Experimental model for a seismic landmine detection 

system,” IEEE Trans. Geoscience and Remote Sensing, 

vol. 39, pp. 1155–1164, June 2001. 



AP Mine: 1.3 cm deep 
Raw Measured Data 

26 McClellan, Georgia Tech June 2014 



Elastic Wave Sources and Sensors 

Development 
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 Electrical arc source 
Ultrasonic sensor 

 Air acoustic source 

Electrodynamic Shaker 

Passive air 

acoustic sensor 

 Radar Sensor  

 Ground Contacting 

Sensors 
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Multi-Channel Extension 
 Each channel can be modeled individually and then match 

them in the (k, ω) domain 

 Determine one model for two channels simultaneously  

 Same pole (k), different zeros (A) 

 Derive and use multi-channel IQML (multi-channel 

extension of Steiglitz-McBride) 
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Two Channel Space-Time Data 

Numerical FDTD Data 

Channel-x Channel-z 
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Spectrum Analysis and Polarization 

Rayleigh wave 

Polarization 

Complex amplitude for “x” and “z” are used 

to create polarization ellipse at each (k , ω ) 
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Henri Georges Doll (1902-1991) 
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Landmine Detection 

 1877: Metal Detector Patent, Alexander Graham Bell 

 1941 patent: Jozef Kosacki, Polish signal officer 

stationed in Britain 

 ~5 kHz.  Could be carried by soldier (14 kg) 

 France and US wanted vehicle mounted system 

 1940, Doll had an (EMI) prototype running in France 

 Fled France and escaped back to the US 

 Had lived and worked in Houston 1928—1938 as Schlumberger grew in US 

 1940: US started development of new mine detectors 

 Doll sets up EMR and spends 50% time during WWII 

 While continuing to serve as director at Schlumberger (SWSC) 

 1943:  won field trial vs. “Prairie Dog” 

 Delivered 505 systems by end of war 
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Henri Doll  (1945) 
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Anecdotes 
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Automatic Braking 



Henri Doll                  (1945) 
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Ground Penetrating Radar 

 GPR senses changes in 

the permittivity and 

conductivity of the 

subsurface 

 Advantages 

 Senses almost all targets of 

interest 

 Complements EMI (metal 

detectors) 

 Very fast 

 Disadvantages 

 Many sources of false alarms 
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TX RX



Sparsity-1 
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Sparsity-2 
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Dr. Ali Cafer Gurbuz:  GPR-1 
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Gurbuz:  GPR-2 
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Gurbuz:  GPR-3 
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Enumerate responses 

from all possible targets 



Gurbuz:  GPR-4 
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Gurbuz:  GPR-5 
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Gurbuz:  GPR-6 
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Sparsity Concepts 

 Enumerate all possible outcomes, and 

then pick the best one(s) 
 

 Enumerate from a model 

 Sampling density of parameters 

 RIP  more samples not necessarily better 
 

 Pick the best, but not exhaustive search! 

 Use L1 optimization to pick the answer 

 Often group sparsity applies 
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EMI Sensing of Buried Targets 

 EMI sensor will sense both  

 Magnetic susceptibility χ of the soil 

 Magnetic polarizability M of the 

targets 

 Measure R but we want 

information about the subsurface 

 Target 

 Type 

 Spatial location  

 Spatial orientation 

 Soil 

 Magnetic Properties 

 Voids 

 Consistency 

 How to get this information? 

 Very accurate measurements of R 

 Understand soil properties 

 Clever signal processing/inversion 
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Soil 

Target 



Sensor Development 
 The hardware must quickly and 

accurately measure the response 

of a target to meet the goals 

 Current systems 

 High dynamic range 

 Wide bandwidth: 300 Hz to 90 KHz 

 21 logarithmically spaced frequencies 

 30 to 90 Hz update rate 

 Uncoupled from the soil 

 30 Hz update rate 
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Small Array EMI 
Small Single EMI 

Large Array EMI 
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Enumerate responses 

from all possible targets ? 
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Tensor  (6 params) instead of  

enumerating rotation angles 
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“Tensor Amplitude” 
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Sparsity-Aware Parameter Estimation for 

Multiple  

Microseismic Events 

Hadi Jamali-Rad 

h.jamalirad@tudelft.nl 

Circuits and Systems (CAS) Group – Delft Univ. of Tech. (TU Delft) 

Georgia Tech 

April 2014     
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Background and Objectives 

 Hydraulic Fracturing?  

 Low permeability 

 Stimulation by creating fractures 

 Water & sand to stop collapse 

 What do we want to know? 

 Hypocenter 

 Moment tensors 

 Origin time 

 Why do we want to know? 

 Productivity 

 Opening, shearing, effectiveness 

 Event detection and sync. 

 Our Goal? 

 Fast & accurate recovery of source 

parameters 

 What do we measure? 

 Displacement traces 

 Geophone arrays 

 

 Fracture  =  Microseismic source 
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The Basic Idea 

 What is missed? Does it help? 

 SPARSITY (in spatial domain) 

 Incorporate in the model: Sparsity-Aware! 



Green’s Functions: Ray Tracing 
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 Moment tensor source model 

 Displacement received from a tensor source  

First Approach 

Preliminaries 
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The validity and accuracy of the proposed approach relies on the knowledge 

of the source time function: 

Second Approach 

A practical constraint 

 Is there a way to eliminate this crucial need?   

Frequency 
Domain Time 

Domain 

 A sparsity-aware framework blind to s(t)! 
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Second Approach 

Modeling: Freq.-Domain 

                    
3 × 1 

3 M × 1 
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Second Approach 

A novel estimator 

 How can we handle Nf  dictionaries and measurement vectors? 

Accuracy (LS part per freq) Group sparsity   

A novel estimator: 

 Take the specific group structure into account 

 Take the common sparsity support in different frequencies into account 

3 M × 6N 

Regularization        



Recap 

 3-axis sensors everywhere 
 

 Tensor representation 

 Formidable Computation  
 

 Sparse Representations 

 Simplify Models 

 

 Compressive Sensing 

 Simpler Acquisition 
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