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Network traffic growth 
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 Communication networks today 

   Source: CISCO Visual Networking Index Global Mobile Data Traffic Forecast Update, 2012-2017 
 

“Smart” devices multiply traffic 

 Large-scale interconnection of “smart” devices 
 Commercial, consumer-oriented, heterogeneous 

Projected IP traffic in Exabytes/month IP traffic is growing explosively 
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Service diversification 

   Source: CISCO Visual Networking Index Global Mobile Data Traffic Forecast Update, 2012-2017 
 

Residential services 

Mobile services 
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Dynamic network cartography 

 Network cartography: succinct depiction of the network state 

 Offers situational awareness of the network landscape 

Network state Impact 

Information dissemination 

Routing Congestion control 

Spectrum allocation 

Risk analysis 
Security assurance 

Network health monitoring 

Interference 

Link utilization 

Path delays 

Anomalous flows 
Traffic volume 

Topology 
Coverage 

QoS 

Hierarchy/Reputation 
Vulnerability 

 Tool for statistical modeling, monitoring and management 

 Accurate network diagnosis and statistical analysis tools  

 Secure and stable network operation 

 Seamless end-user experience in dynamic environments 

G. Mateos, K. Rajawat, and G. B. Giannakis ”Dynamic network cartography,” IEEE Signal  
Processing Magazine, May 2013. 
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Tutorial outlook 

 RF cartography for cognition at the PHY 

 Map ambient RF power in space-time-frequency 

 Identify “crowded” regions to be avoided 
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 Dynamic anomalography for IP networks 

 Reveal where and when traffic anomalies occur 

 Leverage sparse anomalies and low-rank traffic 

 Dynamic network delay and traffic cartography 

 Map network state via limited measurements 

 Monitor network health 
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General context: NetSci analytics 

 General tools: process, analyze, and learn from large pools of network data 

Clean energy and grid analytics Online social media Internet 

Square kilometer array telescope 
Robot and sensor networks 

Biological networks 



 
 Dynamic network delay cartography 
 Kriged Kalman filter predictor 
 Optimal network sampling 
 Empirical validation: Internet2 and NZ-AMP data 
 

 Unveiling network anomalies via sparsity and low rank 
 

 Network-wide link count prediction 
 
 RF cartography for cognition at the PHY 
 
 Conclusions and future research directions 
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Roadmap 
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Why monitor delays? 
 Motivating reasons 
  Assess network health 
 Fault diagnosis 
 Network planning 

 Application domains 
  Old 8-second rule for WWW 
 Content delivery networks 
 Peer-to-peer networks 
 Multiuser games 
 Dynamic server selection 

Low delay variability 

High delay variability 



Desiderata: infer delays from a limited number   
        of end-to-end measurements only! 

9 
1Cooperative Association for Internet Data Analysis. [Online]. www.caida.org 

Sprint 

Qwest 

AT&T 

UUNet 

C&W 

Level 3 

PSINet 

Research issues and goal 
 Few tools are widely supported, e.g., traceroute, ping 
 
 Additional tools from CAIDA1 
 Require software installation at intermediate routers 
 Useless if intermediate routers not accessible 



 Inference task 
 Measure       on subset  
 Predict        on remaining paths 

Problem statement 
 Consider a network graph with links, nodes, and paths 
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 Challenges 
 Overhead: # paths (          )  ~      # nodes  
 Heavily congested routers may drop packets 

 Q: Can fewer measurements suffice? 
 Most paths tend to share a lot of links [Chua’06] 



11 D. B. Chua, E. D. Kolaczyk, and M. Crovella, “Network kriging,” IEEE J. Sel. Areas Communications, 
vol. 24, no. 12, pp. 2263–2272, Dec. 2006. 

Network Kriging prediction 
 Given                          ,                              , universal Kriging:  

 To obtain        ,        adopt a linear model for path delays 

 Sampling matrix S known (selected via heuristic algorithms) 



 Wavelet-based approach [Coates’07] 
 Diffusion wavelet matrix constructed using network topology 
 Can capture temporal correlations, but for      time slots 
 High complexity (                )       cannot have 

12 M. Coates, Y. Pointurier, and M. Rabbat, “Compressed network monitoring for IP and all-optical 
networks,” in Proc. ACM Internet Measurement Conf., San Diego, CA, Oct. 2007. 

Spatio-temporal prediction 

 Q: Should the same set of paths be measured per time slot? 
 Load balancing? Measurement on random paths? 

 Prior art does not jointly offer 
 Spatio-temporal inference with online path selection, at low complexity 



 Delay measured on path            
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Measurement noise i.i.d. over  
paths and time with known variance 

Component due to traffic queuing:  
random-walk with noise cov.  

Component due to processing, transmission, propagation: 
Traffic independent, temporally white, w/ cov.  

Simple delay model 

K. Rajawat, E. Dall’Anese, and G. B. Giannakis, “Dynamic network delay cartography,” IEEE 
Transactions on Information Theory, 2013. 



Goal: Given history                                 find 
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Kriged Kalman Filter: Formulation 
 Path measured on subset 

 KKF: 
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KKF updates 
 State and covariance recursions 

 KKF gain 

 Kriging predictor  
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Which paths to measure? 
 KKF can model and track network-wide delays 

 Error covariance matrix 

 Online experimental design: minimize 

 Log-det: D-optimal design (entropy of a Gaussian r. v.) 

 Practical sampling of paths? Optimal measurements? Criterion? 



Greedy algorithm 

 Submodular + monotonic     greedy solution             optimal [Nemhauser’78] 

 Operational complexity can be reduced further [Krause’11] 
 Increments can be evaluated efficiently:              with 

Repeat S times 

 Algorithm 
  

18 A. Krause, C. Guestrin. “Submodularity and its Applications in Optimized Information Gathering: 
An Introduction”, ACM Transactions on Intelligent Systems and Technology, vol. 2 (4), July 2011 

 Can be modified to handle cases when 
 Each node measures delay on all paths – which S nodes to choose? 
 All nodes measure delay on only one path – which path to choose? 



 Measurements every minute for 3 days in July 2011 ~ 4500 samples 

 Empirical estimates; see e.g., [Myers’76] 
 Techniques modified to handle measurements on subset of paths 
 First 1000 samples used for training; 50 random paths used for training 

 Internet2 backbone 
 72 paths 
 Lightly loaded 

 One-way delay measurements using OWAMP 

 Training phase employed to estimate      ,  

Empirical validation: Internet2 

19 Data: http://internet2.edu/observatory/archive/data-collections.html 



20 

True Kriging 

Wavelet KKF 

Network delay cartography (Internet2) 
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KKF 

Kriging 

Wavelets 

Normalized MSPE (Internet2) 

“Optimal” paths 
  

Random paths 

 Normalized MSPE 
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Empirical validation: NZ-AMP 
 Delays measured on NZ-AMP, part of NLANR project 
 186 paths, heavily loaded network 

 Measurements every 10 minutes during August 2011 ~ 4500 samples 
 Round-trip times measured using ICMP, paths via scamper 

Data: http://erg.wand.net.nz 
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Random path selection 

“Optimal” path selection 

Normalized MSPE (NZ-AMP) 



Kriging 

Wavelets 

KKF 

Scatter plots (NZ-AMP) 
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vs. 
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Takeaways 

 Spatio-temporal inference useful for network health monitoring 

 Dynamic network delay cartography via Kriged Kalman filtering 

 Near-optimal path selection by utilizing submodularity 

 Empirical validation on Internet2 and NZ-AMP datasets 



 
 Dynamic network delay cartography 

 
 Unveiling network anomalies via sparsity and low rank 
 Traffic modeling and identifiability 
 (De-) centralized and online algorithms 
 Numerical tests 
 

 Network-wide link count prediction 
 
 RF cartography for cognition at the PHY 
 
 Conclusions and future research directions 

26 

Roadmap 
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Traffic anomalies 

 Backbone of IP networks 
 
 Traffic anomalies: changes in origin-destination (OD) flows  
 

 Motivation: Anomalies      congestion     limits end-user QoS provisioning 

Objective: Measuring superimposed OD flows per link, identify anomalies  
                   by leveraging sparsity of anomalies and low-rank of traffic. 

 Failures, transient congestions, DoS attacks, intrusions, flooding 
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Model 
 Graph G(N, L) with N nodes, L links, and F  flows (F >> L) 
 
     (as) Single-path per OD flow zf,t 

 
 

 
 

 
 

 
 
 
 

є {0,1} 

Anomaly 

LxT LxF 

 Packet counts per link l and time slot t 

 Matrix model across T  time slots: 
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Low rank of traffic matrix 

 Z: traffic matrix has low rank, e.g., [Lakhina et al‘04] 

Data: http://math.bu.edu/people/kolaczyk/datasets.html 
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Sparsity of anomaly matrix 

 A: anomaly matrix is sparse across both time and flows  

0 200 400 600 800 1000
0

2

4
x 108

Time index(t)

|a
f,t

|

0 50 100
0

2

4
x 108

Flow index(f)

|a
f,t

|

Time 

Flows 



31 

Problem statement 

 

 

 

 

 

 

 Given     and routing matrix    , identify sparse     when      is low rank 

     fat but      still low rank 

(P1) 

 Low-rank      sparse vector of SVs      nuclear norm         and     norm 
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 Anomaly identification 
 Change detection on per-link time series [Brutlag’00], [Casas et al’10] 
 Spatial PCA [Lakhina et al’04] 
 Network anomography  [Zhang et al’05] 
 

Prior art 

 Rank minimization with the nuclear norm, e.g., [Recht-Fazel-Parrilo’10] 
 

 Matrix decomposition [Candes et al’10], [Chandrasekaran et al’11] 
 

 
 
 

Principal Component Pursuit  

(PCP)           

Observed Low rank Sparse 
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Challenges and importance 

 
 

 
 
 

 

        not necessarily sparse and      fat      PCP not applicable 
 

 

 Important special cases 
 

 R = I :  matrix decomposition with PCP [Candes et al’10] 
 X = 0 : compressive sampling with basis pursuit [Chen et al’01] 
 X = CLxρW’ρxT and A = 0 : PCA [Pearson 1901] 
 X = 0, R = D unknown: dictionary learning [Olshausen’97] 
 

 

         LT    +    FT        >>       LT  
 

 
 

X A Y 

STRUCTURE 
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Exact recovery  
 Noise-free case 
 

 
 

M. Mardani, G. Mateos, and G. B. Giannakis,``Recovery of low-rank plus compressed sparse 
matrices with application to unveiling traffic anomalies," IEEE Trans. Information Theory, 2013. 

(P0) 

Theorem:  Given     and    , assume every row and column of       has at  
             most k<s non-zero entries, and     has full row rank. If C1)-C2) 
             hold, then with                           (P0) exactly recovers  

C1) 

C2) 

Q: Can one recover sparse       and low-rank       exactly?  
A: Yes! Under certain conditions on   
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Intuition 

 Exact recovery conditions satisfied if 
 
 
 
 

 
 
 
 

 

 r and s are sufficiently small 
 

 
 
 
 

 

 Nonzero entries of A0 are “sufficiently spread out” 
 

 
 
 
 

 

 Incoherent rank and sparsity- preserving subspaces 
 

 
 
 
 

 

 R satisfies a restricted isometry property 
 

 
 
 
 

 

 Remarks  
 Amplitude of non-zero entries of A0 irrelevant 
 Conditions satisfied for certain random ensembles w.h.p. 
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Numerical validation 
 
 Setup 
     L=105, F=210, T = 420 
     R ~ Bernoulli(1/2) 
     Xo = RPQ’,  P, Q ~ N(0, 1/FT) 
     aij ϵ {-1,0,1} w.p. {π/2, 1-π, π/2} 
 

 
 Relative recovery error 
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In-network processing 
 Spatially-distributed link count data 

Goal: Given local link counts per agent, unveil anomalies in a distributed fashion by                   
 leveraging low-rank of the nominal data matrix and sparsity of the outliers. 

 Challenge:         not separable across rows (links/agents)  

n 

Centralized: Decentralized: 

Agent 1 

Agent N 

 Local processing and single-hop communications 
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Separable regularization   
 Key property 

Lxρ 
≥rank[X] 

    

V’ 

W’ C 

 Separable formulation equivalent to (P1) 

(P2) 

 Nonconvex; less variables: 

 Proposition 3: If                 stat. pt. of (P2) and                                        ,  
                          then                                    is a global optimum of (P1).   
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Distributed algorithm 

M. Mardani, G. Mateos, and G. B. Giannakis, “In-network sparsity regularized rank minimization: Algorithms 
and applications," IEEE Transactions on Signal Processing, 2013. 

 Alternating-direction method of multipliers (ADMM) solver for (P2) 
 Method [Glowinski-Marrocco’75], [Gabay-Mercier’76] 
 Learning over networks [Schizas-Ribeiro-Giannakis’07] 

Consensus-based optimization Attains centralized performance 
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Benchmark: PCA-based methods 
 Idea: anomalies increase considerably rank(Y) 
 
 

 Algorithm 
   i) Form subspace      via r-dominant left  
       singular vectors of Y (resp.        ) 
 
 

 
 
 
 
 

 Assumes knowledge of r:=rank(X) 
 
 
 
 

σi(X) 

Index i 

-----Y 
-----X 

 ii) Infer anomalies from  
 

 [Lakhina et al’04] For t = 1,…,T  
 
 [Zhang et al’05] Sparse anomalies 
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Synthetic data 
 Random network topology 

 N=20, L=108, F=360, T=760 
 Minimum hop-count routing 
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PCA-based method, r=5
PCA-based method, r=7
PCA-based method, r=9
Proposed method, per time and flow
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Internet2 data 
 Real network data  

 Dec. 8-28, 2008 
 N=11, L=41, F=121, T=504 
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[Lakhina04], rank=1
[Lakhina04], rank=2
[Lakhina04], rank=3
Proposed method
[Zhang05], rank=1
[Zhang05], rank=2
[Zhang05], rank=3

Data: http://www.cs.bu.edu/~crovella/links.html 
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Dynamic anomalography 

M. Mardani, G. Mateos, and G. B. Giannakis, "Dynamic anomalography: Tracking network anomalies via  
sparsity and low rank," IEEE Journal of Selected Topics in Signal Processing, pp. 50-66, Feb. 2013. 
 

 Construct an estimated map of anomalies in real time 

 Streaming data model: 

 (Robust) subspace tracking  
 Projection approximation (PAST) [Yang’95] 
 Missing data: GROUSE [Balzano et al’10], PETRELS [Chi et al’12] 
 Outliers: [Mateos-Giannakis’10], GRASTA [He et al’11] 

 Compressed “outliers” challenge identifiability 

     Goal: Given                            estimate              online when        is         
          in a low-dimensional space and        is sparse 
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Online estimator 
 Challenge:         not separable across columns (time)  

 Approach: regularized exponentially-weighted LS formulation 

---- estimated 
---- real 

 

o---- estimated 
  ---- real 
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Delay cartography 

 Internet2 data (Aug 18-22,2011) 
 End-to-end latency matrix 
 N=9, L=T=N; 20% missing data 

 Network distance prediction [Liau et al’12] 

Data: http://internet2.edu/observatory/archive/data-collections.html 

Relative error: 10% 

 Approach: distributed low-rank matrix completion 



 Unveiling network traffic anomalies via convex optimization  
 Leveraging sparsity and low rank 
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Takeaways 

 Reveal when and where anomalies occur 

 Exact recovery of low-rank plus compressed sparse matrices 

 Distributed/online algorithms with guaranteed performance 



 
 Dynamic network delay cartography 

 
 Unveiling network anomalies via sparsity and low rank 

 
 Network-wide link count prediction 
 Semi-supervised learning for traffic maps 
 Batch and online processing 
 Empirical validation: Internet2 data 

 
 RF cartography for cognition at the PHY 
 
 Conclusions and future research directions 

47 

Roadmap 
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A commuting conundrum 
 Objective: map a “good” route for packet delivery 
 

 Application domains 
  Transportation networks [Gastner-Newman’04] 
 Communication networks [Soule et al’05] 
 Sensor networks [Abrams et al’04] 

 Measure traffic at few roads/links only 
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Model 
 Graph G(N, L) with N nodes, L links, and F  flows (F >> L) 
 
     (as) Single-path per OD flow zf,t 
 
 
 
 Packet counts per link l and time slot t 

 Incomplete, noisy measurements on a subset of links  
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Problem statement 

Goal: Given                        and historical data                        , find 

 Impact 
 Ability to handle missing data 
 Online prediction capturing spatio-temporal correlations 
 Computationally-efficient link traffic prediction 

P. A. Forero, K. Rajawat, and G. B. Giannakis, “Prediction of partially observed dynamical 
processes over networks via dictionary learning,” J. Machine Learning Research, 2013. 

 Prior art 
 Traffic estimation                        [Zhang et al’05] 
 Kriging [Chua et al’06], plus traffic modeling [Vaughn et al’10] 
 Topology-driven basis expansion [Crovella-Kolaczyk’03], [Coates et al’07] 
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Data-driven model of link counts 
 Sparse representation of link counts 

 Notation: 

Dictionary Learning (DL) [Olshausen-Field’97] 
Given                               , find dictionary (basis)      and sparse  

 Q: How about DL from incomplete data                         ? 
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Capturing spatial link dependence 
 Auxiliary graph      with vertices = links in G  
 Edge weights         = number of OD flows common to links 
 Adjacency matrix:                    , graph Laplacian  

1 1 

1 1 

1 

G 

 Regularizers effect sparsity and smoothness over 

 Cost function to learn D  
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Semi-supervised DL 
Semi-supervised Dictionary Learning (SSDL)  

Given                               , find dictionary (basis)      and sparse  

 SSDL biconvex, block-coordinate descent (BCD) solver  
 Update              via parallel entry-wise soft-thresholding 
 Update each      via QP + projection onto the Euclidean ball  

Proposition: BCD’s iterates converge to a stationary point of SSDL 

γ -γ 
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Link load prediction 
 Given                  and learnt dictionary     , solve 

 Captures sparsity of      and smoothness of link loads over 

 Predict       based on  

 Scaling factor               reduces bias in       [Zou-Hastie’05] 
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Batch processing summary 
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Test case: Internet2 
 Internet2 measurement archive 
 

 Prediction improves as link load increases 
 

Training phase – 30 links measured Operational phase – 30 links measured 

 L=54, T=2000 
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Prediction error (Internet2) 
 Normalized prediction error: 
 

 Q = number of columns of D; t0=2000 

 Gravity-based [Zhang et al’05]; Diffusion wavelets [Coifman-Maggioni’07] 
 

 SSDL outperforms competing alternatives 
 

Training with 30 links Training with 50 links 
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Online processing 
 Capture temporal correlations on  

 Given                and dictionary      , solve 

 Predict       based on  

 Dictionary update 
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Real-time prediction (Internet2) 
 Q=60, different values of the forgetting factor 
  Measure traffic at 30 links only 

 SSDL-based tracker outperforms diffusion wavelets 
 



 Prediction of network processes from incomplete observations 
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Takeaways 

 Spatial correlation of link counts via Laplacian regularization 

 Online algorithms capturing temporal correlations 

 Semi-supervised learning 

 Link count prediction based on dictionary learning 



 
 Dynamic network delay cartography 

 
 Unveiling network anomalies via sparsity and low rank 

 
 Network-wide link count prediction 
 
 RF cartography for cognition at the PHY 
 Interference spectrum cartography 
 Channel gain cartography 

 
 Conclusions and future research directions 

61 

Roadmap 



62 

 Fixed radio 
 Policy-based: parameters set by 

operators 
 

 Software-defined radio (SDR) 
 Programmable: can adjust 

parameters to intended link 
 

 Cognitive radio (CR) 
 Intelligent: sense the environment 

& learn to adapt [Mitola’00] 

RX 

TX 

CR 

Dynamic 
Resource 
Allocation 

RF 
environment 

- sensing 
- learning 

- adapting to  
  spectrum  

What is a cognitive radio? 

 Cognizant transceiver: sensing 
 Agile transmitter: adaptation 
 Intelligent DRA: decision making 
 Radio reconfiguration decisions 
 Spectrum access decisions 
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US FCC 

Inefficient occupancy 

0       1        2       3        4       5      6GHz 

P
S

D
 

Spectrum scarcity problem 

 Fixed spectrum access policies 
 Useful radio spectrum pre-assigned 
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PSD 
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SU 
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PU2 
PU3 

noise 
floor 
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SU 
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PU2 

PU3 

Dynamical access under user hierarchy 

 Spectrum underlay 
 Restriction on transmit power levels 
 Operation over ultra wide bandwidths 

 Spectrum overlay 
 Constraints on when and where to transmit  
 Avoid interference to Pus via sensing and adaptive allocation 

 Primary users (PUs) versus secondary users (SUs/CRs) 

Spectrum underlay Spectrum overlay 
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Source: Office of  
Communications (UK) 

Cooperative sensing for efficient sharing 
 Multiple CRs jointly detect the spectrum [Ganesan-Li’06][Ghasemi-Sousa’07] 

 Benefits of cooperation 
 Spatial diversity gain mitigates multipath fading/shadowing 
 Reduced sensing time and local processing 
 Ability to cope with hidden terminal problem 

 Limitation: existing approaches do not exploit space-time dimensions 
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J. A. Bazerque and G. B. Giannakis, “Distributed spectrum sensing for cognitive radio networks by 
exploiting sparsity,'’ IEEE Transactions on Signal Processing, pp. 1847-1862, March 2010.  
 

Cooperative PSD cartography 
 Idea: CRs collaborate to form a spatial map of the RF spectrum 

Goal:  Find PSD map                across  
 
space              and frequency  

 Specifications: coarse approx. suffices 

 Approach: basis expansion of 
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Modeling 
 Transmitters 

 Sensing CRs 

 Frequency bases 

 Sensed frequencies 

 Sparsity present in space and frequency 



 Data                   Rx-power at cognitive radio 

Space-frequency basis expansion 
 Find                   Tx-power of source s over frequency band 
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 Estimate sparse    to find PSD at 

Sparsity-promoting 
regularization 
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Exchange of local  
        estimates       

Scalability 

 Robustness 
Lack of infrastructure 

 

Decentralized 
 
 
 Ad-hoc 

Centralized 
 
 
 Fusion  

center 

Distributed recursive implementation 

 Consensus-based approach 
 Solve locally 

 Constrained optimization using ADMM 



RF spectrum cartography 
    sources 
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  NNLS    Lasso 

 As a byproduct, Lasso localizes all sources via variable selection 

                   candidate locations,                 CRs 
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 Centralized sensing  
 No fading 
 Ns=25 

 4 CR Rxs 

2 CR Txs 

Simulated test: PSD map estimation 
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“True” Tx  
spectrum 

Sensed at the  
   consensus step 

Distributed consensus with fading 

 Starting from a local estimate, sensors reach consensus 
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J. A. Bazerque, G. Mateos, and G. B. Giannakis, ``Group-Lasso on Splines for Spectrum 
Cartography,’’ IEEE Transactions on Signal Processing,’’ pp. 4648-4663, October 2011. 

Spline-based PSD cartography 
 Q: How about shadowing?   

             : unknown dependence on spatial variable x 

Path-loss Shadowing 

 A: Basis expansion with coefficient functions 
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Frequency basis expansion 
 PSD of Tx source                          is  

 

Basis expansion in frequency 

 Basis functions 
 Accommodate prior knowledge       raised-cosine 
 Sharp transitions (regulatory masks)       rectangular, non-overlapping 
 Overcomplete basis set (large     )        robustness 
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Spatial PSD model  
 Spatial loss function                                 Unknown  

 Per sub-band factorization in space and frequency (indep. of      ) 

 BEM:  

 Goal: estimate PSD atlas as 



Nonparametric basis pursuit 

 Twofold regularization of variational LS estimator 
 

(P1) 

 Available data: 
 
      location of CRs 
 
      measured frequencies 

Observations 
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 Avoid overfitting by promoting smoothness 

 Nonparametric basis selection (                      not  selected) 
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Thin-plate splines solution 

 Unique, closed-form, finitely-parameterized minimizers! 

 Proposition 1: Estimates           in (P1) are thin-plate splines [Duchon’77]  
 

 
  
  where           is the radial basis function                               , and 

 Q2: How does (P1) perform basis selection? 

 Q1: How to estimate                    based on    ? 
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Lassoing bases 
 (P1) equivalent to group Lasso estimator [Yuan-Lin’06] 

 Matrices (      and      dependent) 
 

 i) ii) iii) 

 Group Lasso encourages sparse factors  
 Full-rank mapping:   

Proposition 2:  

as             

w/ 

Minimizers               of   (P1) are fully determined by  
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Simulated test  

S 
P 
E 
C 
T 
R 
U 
M 
  
M 
A 
P 
 

Basis index  Frequency (Mhz) 

              sources; raised cosine pulses 
               sensing CRs,              sampling frequencies 
                               bases; (roll off x center frequency x bandwidth) 

Original Estimated 
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Numerical test IEEE 802.11  
                                                                                 PUs 

PSD cartography 

 Maps estimated under fading + shadowing + overlapping bases 

                 CRs 

Original Estimated 

Channel 6 

Channel 11 
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Real RF data 
 

 Frequency bases identified 
 Maps recovered and extrapolated 

 IEEE 802.11 WLAN activity sensed 

                 CRs 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

-50 -60 -40 -30 -20 -10 (dBi) 
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Semi-supervised DL for PSD maps 

S.-J. Kim and G. B. Giannakis, "Cognitive Radio Spectrum Prediction using Dictionary Learning,"  
Proc. of Globecom Conf., Atlanta, GA,  2013. 

 Signal model 

 Rx-power measured by a few CRs 

 Batch formulation 

 Online algorithm via exponentially weighted criterion 
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Numerical tests 
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Recap: PHY sensing via RF cartography 

S.-J. Kim, E. Dall’Anese, and G. B. Giannakis,“Cooperative Spectrum Sensing for Cognitive Radios 
using Kriged Kalman Filtering,” IEEE J. Selected Topics in Signal Processing,  pp. 24-36, Feb. 2011.  

 Power spectral density (PSD) maps 

 Capture ambient power in space-time-frequency 

 Can identify “crowded” regions to be avoided 

 Channel gain (CG) maps 

 Time-frequency channel from any-to-any point 

 CRs adjust Tx power to min. PU disruption 



E. Dall’Anese, S.-J. Kim, and G. B. Giannakis, “Channel Gain Map Tracking via Distributed Kriging,”   
IEEE Trans.  on Vehicular Technology,  pp. 1205-1211, March 2011.  85 

Kalman 
filtering 

Kriging 
interpolation 

Approach: spatial LMMSE interpolation (Kriging) + KF for tracking channel dynamics  

       Payoffs: tracking PU activities;  
                      accurate interference models;  
                      efficient resource allocation  

Outlook: jointly optimal PHY  
                CR sensing and access    

Channel gain cartography 
 CG after averaging small-scale fading (dB) 

 State-space model for shadowing 
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Approach: low-rank matrix completion 

       Payoffs: global view of any-to-any CGs;  
                      real-time propagation metrics;  
                      efficient resource allocation  

Outlook: kernel-based extrapolator for missing CR-to-PU measurements, 
                or future time intervals    

Any-to-any CG estimation 
 Shadowing model-free approach  

 Slow variations in shadow fading 

 Low-rank any-to-any CG matrix 

Estimated CG map 

S.-J. Kim and G. B. Giannakis, “Dynamic Network Learning for Cognitive Radio Spectrum Sensing,”  
Proc. of Intl. Workshop on Comp. Advances in Multi-Sensor Adaptive Process., Saint Martin,  2013. 
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Approach: blind dictionary learning 

       Payoffs: tracking PU activities;  
                      efficient resource allocation  

Outlook: missing data due to limited sensing; 
                distributed and robust algorithms 

PU power and CR-PU link learning 
 Reduce overhead in any-to-any CG mapping  

 Learn CGs only between CRs and PUs 

Detection of PU activity 

Estimated CG 

 Online detection of active PU transmitters 

S.-J. Kim, N. Jain, and G. B. Giannakis, “Joint Link Learning and Cognitive Radio Sensing," in Proc. of   
Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2011.  
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Takeaways 
 PHY layer spatiotemporal sensing via RF cartography 
 Space-time-frequency view of interference and channel gains 

 PU/source localization and tracking 

 Parsimony via sparsity and distribution via consensus 
 Lasso, group Lasso on splines, and method of multipliers 

 Identify idle bands across space 
 Aid dynamic spectrum access policies 



 
 Dynamic network delay cartography 

 
 Unveiling network anomalies via sparsity and low rank 

 
 Network-wide link count prediction 
 
 RF cartography for cognition at the PHY 
 
 Conclusions and future research directions 
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Roadmap 
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The big picture ahead… 
Network path delay maps 
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RF interference cartography 

Channel gain maps Coverage maps 

 Network cartography: succinct depiction of the network state 

 Vision: use atlas to enable spatial re-use, hand-off, localization, Tx-power       
     tracking, resource allocation, health monitoring, and routing 
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Concluding summary 
 Dynamic network cartography 

 Global state mapping from incomplete and corrupted data 

 Statistical SP toolbox 
 Sparsity-cognizant learning, low-rank modeling 

 Framework to construct maps of the dynamic network state 
 Real-time, distributed scalable algorithms for large-scale networks 

 Path delay and link traffic maps 
 Prompt and accurate identification of traffic anomalies 
 PHY layer sensing in wireless CR networks via RF cartography 

 Kriged Kalman filtering of dynamical processes over networks 
 Semi-supervised dictionary learning 
 Distributed optimization via the ADMM Thank you! 
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Questions? 

http://spincom.umn.edu 
University of Minnesota 

Dr. J. A. Bazerque 
UofM 

Dr. E. Dall’Anese  
UofM 

Dr. P. A. Forero 
SPAWAR 

Dr. S. J. Kim 
UofM 

M. Mardani 
UofM 

Prof. K. Rajawat 
IIT Kanpur 
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