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Network traffic growth 
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 Communication networks today 

   Source: CISCO Visual Networking Index Global Mobile Data Traffic Forecast Update, 2012-2017 
 

“Smart” devices multiply traffic 

 Large-scale interconnection of “smart” devices 
 Commercial, consumer-oriented, heterogeneous 

Projected IP traffic in Exabytes/month IP traffic is growing explosively 
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Service diversification 

   Source: CISCO Visual Networking Index Global Mobile Data Traffic Forecast Update, 2012-2017 
 

Residential services 

Mobile services 
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Dynamic network cartography 

 Network cartography: succinct depiction of the network state 

 Offers situational awareness of the network landscape 

Network state Impact 

Information dissemination 

Routing Congestion control 

Spectrum allocation 

Risk analysis 
Security assurance 

Network health monitoring 

Interference 

Link utilization 

Path delays 

Anomalous flows 
Traffic volume 

Topology 
Coverage 

QoS 

Hierarchy/Reputation 
Vulnerability 

 Tool for statistical modeling, monitoring and management 

 Accurate network diagnosis and statistical analysis tools  

 Secure and stable network operation 

 Seamless end-user experience in dynamic environments 

G. Mateos, K. Rajawat, and G. B. Giannakis ”Dynamic network cartography,” IEEE Signal  
Processing Magazine, May 2013. 
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Tutorial outlook 

 RF cartography for cognition at the PHY 

 Map ambient RF power in space-time-frequency 

 Identify “crowded” regions to be avoided 
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 Dynamic anomalography for IP networks 

 Reveal where and when traffic anomalies occur 

 Leverage sparse anomalies and low-rank traffic 

 Dynamic network delay and traffic cartography 

 Map network state via limited measurements 

 Monitor network health 
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General context: NetSci analytics 

 General tools: process, analyze, and learn from large pools of network data 

Clean energy and grid analytics Online social media Internet 

Square kilometer array telescope 
Robot and sensor networks 

Biological networks 



 
 Dynamic network delay cartography 
 Kriged Kalman filter predictor 
 Optimal network sampling 
 Empirical validation: Internet2 and NZ-AMP data 
 

 Unveiling network anomalies via sparsity and low rank 
 

 Network-wide link count prediction 
 
 RF cartography for cognition at the PHY 
 
 Conclusions and future research directions 
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Roadmap 
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Why monitor delays? 
 Motivating reasons 
  Assess network health 
 Fault diagnosis 
 Network planning 

 Application domains 
  Old 8-second rule for WWW 
 Content delivery networks 
 Peer-to-peer networks 
 Multiuser games 
 Dynamic server selection 

Low delay variability 

High delay variability 



Desiderata: infer delays from a limited number   
        of end-to-end measurements only! 
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1Cooperative Association for Internet Data Analysis. [Online]. www.caida.org 

Sprint 

Qwest 

AT&T 

UUNet 

C&W 

Level 3 

PSINet 

Research issues and goal 
 Few tools are widely supported, e.g., traceroute, ping 
 
 Additional tools from CAIDA1 
 Require software installation at intermediate routers 
 Useless if intermediate routers not accessible 



 Inference task 
 Measure       on subset  
 Predict        on remaining paths 

Problem statement 
 Consider a network graph with links, nodes, and paths 
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 Challenges 
 Overhead: # paths (          )  ~      # nodes  
 Heavily congested routers may drop packets 

 Q: Can fewer measurements suffice? 
 Most paths tend to share a lot of links [Chua’06] 



11 D. B. Chua, E. D. Kolaczyk, and M. Crovella, “Network kriging,” IEEE J. Sel. Areas Communications, 
vol. 24, no. 12, pp. 2263–2272, Dec. 2006. 

Network Kriging prediction 
 Given                          ,                              , universal Kriging:  

 To obtain        ,        adopt a linear model for path delays 

 Sampling matrix S known (selected via heuristic algorithms) 



 Wavelet-based approach [Coates’07] 
 Diffusion wavelet matrix constructed using network topology 
 Can capture temporal correlations, but for      time slots 
 High complexity (                )       cannot have 

12 M. Coates, Y. Pointurier, and M. Rabbat, “Compressed network monitoring for IP and all-optical 
networks,” in Proc. ACM Internet Measurement Conf., San Diego, CA, Oct. 2007. 

Spatio-temporal prediction 

 Q: Should the same set of paths be measured per time slot? 
 Load balancing? Measurement on random paths? 

 Prior art does not jointly offer 
 Spatio-temporal inference with online path selection, at low complexity 



 Delay measured on path            
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Measurement noise i.i.d. over  
paths and time with known variance 

Component due to traffic queuing:  
random-walk with noise cov.  

Component due to processing, transmission, propagation: 
Traffic independent, temporally white, w/ cov.  

Simple delay model 

K. Rajawat, E. Dall’Anese, and G. B. Giannakis, “Dynamic network delay cartography,” IEEE 
Transactions on Information Theory, 2013. 



Goal: Given history                                 find 
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Kriged Kalman Filter: Formulation 
 Path measured on subset 

 KKF: 
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KKF updates 
 State and covariance recursions 

 KKF gain 

 Kriging predictor  
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Which paths to measure? 
 KKF can model and track network-wide delays 

 Error covariance matrix 

 Online experimental design: minimize 

 Log-det: D-optimal design (entropy of a Gaussian r. v.) 

 Practical sampling of paths? Optimal measurements? Criterion? 



Greedy algorithm 

 Submodular + monotonic     greedy solution             optimal [Nemhauser’78] 

 Operational complexity can be reduced further [Krause’11] 
 Increments can be evaluated efficiently:              with 

Repeat S times 

 Algorithm 
  

18 A. Krause, C. Guestrin. “Submodularity and its Applications in Optimized Information Gathering: 
An Introduction”, ACM Transactions on Intelligent Systems and Technology, vol. 2 (4), July 2011 

 Can be modified to handle cases when 
 Each node measures delay on all paths – which S nodes to choose? 
 All nodes measure delay on only one path – which path to choose? 



 Measurements every minute for 3 days in July 2011 ~ 4500 samples 

 Empirical estimates; see e.g., [Myers’76] 
 Techniques modified to handle measurements on subset of paths 
 First 1000 samples used for training; 50 random paths used for training 

 Internet2 backbone 
 72 paths 
 Lightly loaded 

 One-way delay measurements using OWAMP 

 Training phase employed to estimate      ,  

Empirical validation: Internet2 

19 Data: http://internet2.edu/observatory/archive/data-collections.html 
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True Kriging 

Wavelet KKF 

Network delay cartography (Internet2) 
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KKF 

Kriging 

Wavelets 

Normalized MSPE (Internet2) 

“Optimal” paths 
  

Random paths 

 Normalized MSPE 
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Empirical validation: NZ-AMP 
 Delays measured on NZ-AMP, part of NLANR project 
 186 paths, heavily loaded network 

 Measurements every 10 minutes during August 2011 ~ 4500 samples 
 Round-trip times measured using ICMP, paths via scamper 

Data: http://erg.wand.net.nz 
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Random path selection 

“Optimal” path selection 

Normalized MSPE (NZ-AMP) 



Kriging 

Wavelets 

KKF 

Scatter plots (NZ-AMP) 
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vs. 
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Takeaways 

 Spatio-temporal inference useful for network health monitoring 

 Dynamic network delay cartography via Kriged Kalman filtering 

 Near-optimal path selection by utilizing submodularity 

 Empirical validation on Internet2 and NZ-AMP datasets 



 
 Dynamic network delay cartography 

 
 Unveiling network anomalies via sparsity and low rank 
 Traffic modeling and identifiability 
 (De-) centralized and online algorithms 
 Numerical tests 
 

 Network-wide link count prediction 
 
 RF cartography for cognition at the PHY 
 
 Conclusions and future research directions 
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Roadmap 
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Traffic anomalies 

 Backbone of IP networks 
 
 Traffic anomalies: changes in origin-destination (OD) flows  
 

 Motivation: Anomalies      congestion     limits end-user QoS provisioning 

Objective: Measuring superimposed OD flows per link, identify anomalies  
                   by leveraging sparsity of anomalies and low-rank of traffic. 

 Failures, transient congestions, DoS attacks, intrusions, flooding 

Time 
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Model 
 Graph G(N, L) with N nodes, L links, and F  flows (F >> L) 
 
     (as) Single-path per OD flow zf,t 

 
 

 
 

 
 

 
 
 
 

є {0,1} 

Anomaly 

LxT LxF 

 Packet counts per link l and time slot t 

 Matrix model across T  time slots: 
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Low rank of traffic matrix 

 Z: traffic matrix has low rank, e.g., [Lakhina et al‘04] 

Data: http://math.bu.edu/people/kolaczyk/datasets.html 
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Sparsity of anomaly matrix 

 A: anomaly matrix is sparse across both time and flows  
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Problem statement 

 

 

 

 

 

 

 Given     and routing matrix    , identify sparse     when      is low rank 

     fat but      still low rank 

(P1) 

 Low-rank      sparse vector of SVs      nuclear norm         and     norm 
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 Anomaly identification 
 Change detection on per-link time series [Brutlag’00], [Casas et al’10] 
 Spatial PCA [Lakhina et al’04] 
 Network anomography  [Zhang et al’05] 
 

Prior art 

 Rank minimization with the nuclear norm, e.g., [Recht-Fazel-Parrilo’10] 
 

 Matrix decomposition [Candes et al’10], [Chandrasekaran et al’11] 
 

 
 
 

Principal Component Pursuit  

(PCP)           

Observed Low rank Sparse 
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Challenges and importance 

 
 

 
 
 

 

        not necessarily sparse and      fat      PCP not applicable 
 

 

 Important special cases 
 

 R = I :  matrix decomposition with PCP [Candes et al’10] 
 X = 0 : compressive sampling with basis pursuit [Chen et al’01] 
 X = CLxρW’ρxT and A = 0 : PCA [Pearson 1901] 
 X = 0, R = D unknown: dictionary learning [Olshausen’97] 
 

 

         LT    +    FT        >>       LT  
 

 
 

X A Y 

STRUCTURE 
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Exact recovery  
 Noise-free case 
 

 
 

M. Mardani, G. Mateos, and G. B. Giannakis,``Recovery of low-rank plus compressed sparse 
matrices with application to unveiling traffic anomalies," IEEE Trans. Information Theory, 2013. 

(P0) 

Theorem:  Given     and    , assume every row and column of       has at  
             most k<s non-zero entries, and     has full row rank. If C1)-C2) 
             hold, then with                           (P0) exactly recovers  

C1) 

C2) 

Q: Can one recover sparse       and low-rank       exactly?  
A: Yes! Under certain conditions on   
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Intuition 

 Exact recovery conditions satisfied if 
 
 
 
 

 
 
 
 

 

 r and s are sufficiently small 
 

 
 
 
 

 

 Nonzero entries of A0 are “sufficiently spread out” 
 

 
 
 
 

 

 Incoherent rank and sparsity- preserving subspaces 
 

 
 
 
 

 

 R satisfies a restricted isometry property 
 

 
 
 
 

 

 Remarks  
 Amplitude of non-zero entries of A0 irrelevant 
 Conditions satisfied for certain random ensembles w.h.p. 
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Numerical validation 
 
 Setup 
     L=105, F=210, T = 420 
     R ~ Bernoulli(1/2) 
     Xo = RPQ’,  P, Q ~ N(0, 1/FT) 
     aij ϵ {-1,0,1} w.p. {π/2, 1-π, π/2} 
 

 
 Relative recovery error 
      
 

% non-zero entries (ρ)

ra
nk

(X
R

) (
r)

 

 

0.1 2.5 4.5 6.5 8.5 10.5 12.5

10

20

30

40

50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ra
nk

(X
0)

 [r
] 

[(s/FT)%] 



37 

In-network processing 
 Spatially-distributed link count data 

Goal: Given local link counts per agent, unveil anomalies in a distributed fashion by                   
 leveraging low-rank of the nominal data matrix and sparsity of the outliers. 

 Challenge:         not separable across rows (links/agents)  

n 

Centralized: Decentralized: 

Agent 1 

Agent N 

 Local processing and single-hop communications 
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Separable regularization   
 Key property 

Lxρ 
≥rank[X] 

    

V’ 

W’ C 

 Separable formulation equivalent to (P1) 

(P2) 

 Nonconvex; less variables: 

 Proposition 3: If                 stat. pt. of (P2) and                                        ,  
                          then                                    is a global optimum of (P1).   
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Distributed algorithm 

M. Mardani, G. Mateos, and G. B. Giannakis, “In-network sparsity regularized rank minimization: Algorithms 
and applications," IEEE Transactions on Signal Processing, 2013. 

 Alternating-direction method of multipliers (ADMM) solver for (P2) 
 Method [Glowinski-Marrocco’75], [Gabay-Mercier’76] 
 Learning over networks [Schizas-Ribeiro-Giannakis’07] 

Consensus-based optimization Attains centralized performance 
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Benchmark: PCA-based methods 
 Idea: anomalies increase considerably rank(Y) 
 
 

 Algorithm 
   i) Form subspace      via r-dominant left  
       singular vectors of Y (resp.        ) 
 
 

 
 
 
 
 

 Assumes knowledge of r:=rank(X) 
 
 
 
 

σi(X) 

Index i 

-----Y 
-----X 

 ii) Infer anomalies from  
 

 [Lakhina et al’04] For t = 1,…,T  
 
 [Zhang et al’05] Sparse anomalies 
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Synthetic data 
 Random network topology 

 N=20, L=108, F=360, T=760 
 Minimum hop-count routing 
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PCA-based method, r=5
PCA-based method, r=7
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Internet2 data 
 Real network data  

 Dec. 8-28, 2008 
 N=11, L=41, F=121, T=504 
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[Lakhina04], rank=1
[Lakhina04], rank=2
[Lakhina04], rank=3
Proposed method
[Zhang05], rank=1
[Zhang05], rank=2
[Zhang05], rank=3

Data: http://www.cs.bu.edu/~crovella/links.html 
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Dynamic anomalography 

M. Mardani, G. Mateos, and G. B. Giannakis, "Dynamic anomalography: Tracking network anomalies via  
sparsity and low rank," IEEE Journal of Selected Topics in Signal Processing, pp. 50-66, Feb. 2013. 
 

 Construct an estimated map of anomalies in real time 

 Streaming data model: 

 (Robust) subspace tracking  
 Projection approximation (PAST) [Yang’95] 
 Missing data: GROUSE [Balzano et al’10], PETRELS [Chi et al’12] 
 Outliers: [Mateos-Giannakis’10], GRASTA [He et al’11] 

 Compressed “outliers” challenge identifiability 

     Goal: Given                            estimate              online when        is         
          in a low-dimensional space and        is sparse 
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Online estimator 
 Challenge:         not separable across columns (time)  

 Approach: regularized exponentially-weighted LS formulation 

---- estimated 
---- real 

 

o---- estimated 
  ---- real 
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Delay cartography 

 Internet2 data (Aug 18-22,2011) 
 End-to-end latency matrix 
 N=9, L=T=N; 20% missing data 

 Network distance prediction [Liau et al’12] 

Data: http://internet2.edu/observatory/archive/data-collections.html 

Relative error: 10% 

 Approach: distributed low-rank matrix completion 



 Unveiling network traffic anomalies via convex optimization  
 Leveraging sparsity and low rank 
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Takeaways 

 Reveal when and where anomalies occur 

 Exact recovery of low-rank plus compressed sparse matrices 

 Distributed/online algorithms with guaranteed performance 



 
 Dynamic network delay cartography 

 
 Unveiling network anomalies via sparsity and low rank 

 
 Network-wide link count prediction 
 Semi-supervised learning for traffic maps 
 Batch and online processing 
 Empirical validation: Internet2 data 

 
 RF cartography for cognition at the PHY 
 
 Conclusions and future research directions 

47 

Roadmap 
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A commuting conundrum 
 Objective: map a “good” route for packet delivery 
 

 Application domains 
  Transportation networks [Gastner-Newman’04] 
 Communication networks [Soule et al’05] 
 Sensor networks [Abrams et al’04] 

 Measure traffic at few roads/links only 
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Model 
 Graph G(N, L) with N nodes, L links, and F  flows (F >> L) 
 
     (as) Single-path per OD flow zf,t 
 
 
 
 Packet counts per link l and time slot t 

 Incomplete, noisy measurements on a subset of links  
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Problem statement 

Goal: Given                        and historical data                        , find 

 Impact 
 Ability to handle missing data 
 Online prediction capturing spatio-temporal correlations 
 Computationally-efficient link traffic prediction 

P. A. Forero, K. Rajawat, and G. B. Giannakis, “Prediction of partially observed dynamical 
processes over networks via dictionary learning,” J. Machine Learning Research, 2013. 

 Prior art 
 Traffic estimation                        [Zhang et al’05] 
 Kriging [Chua et al’06], plus traffic modeling [Vaughn et al’10] 
 Topology-driven basis expansion [Crovella-Kolaczyk’03], [Coates et al’07] 
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Data-driven model of link counts 
 Sparse representation of link counts 

 Notation: 

Dictionary Learning (DL) [Olshausen-Field’97] 
Given                               , find dictionary (basis)      and sparse  

 Q: How about DL from incomplete data                         ? 



52 

Capturing spatial link dependence 
 Auxiliary graph      with vertices = links in G  
 Edge weights         = number of OD flows common to links 
 Adjacency matrix:                    , graph Laplacian  

1 1 

1 1 

1 

G 

 Regularizers effect sparsity and smoothness over 

 Cost function to learn D  
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Semi-supervised DL 
Semi-supervised Dictionary Learning (SSDL)  

Given                               , find dictionary (basis)      and sparse  

 SSDL biconvex, block-coordinate descent (BCD) solver  
 Update              via parallel entry-wise soft-thresholding 
 Update each      via QP + projection onto the Euclidean ball  

Proposition: BCD’s iterates converge to a stationary point of SSDL 

γ -γ 
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Link load prediction 
 Given                  and learnt dictionary     , solve 

 Captures sparsity of      and smoothness of link loads over 

 Predict       based on  

 Scaling factor               reduces bias in       [Zou-Hastie’05] 
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Batch processing summary 
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Test case: Internet2 
 Internet2 measurement archive 
 

 Prediction improves as link load increases 
 

Training phase – 30 links measured Operational phase – 30 links measured 

 L=54, T=2000 
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Prediction error (Internet2) 
 Normalized prediction error: 
 

 Q = number of columns of D; t0=2000 

 Gravity-based [Zhang et al’05]; Diffusion wavelets [Coifman-Maggioni’07] 
 

 SSDL outperforms competing alternatives 
 

Training with 30 links Training with 50 links 
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Online processing 
 Capture temporal correlations on  

 Given                and dictionary      , solve 

 Predict       based on  

 Dictionary update 
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Real-time prediction (Internet2) 
 Q=60, different values of the forgetting factor 
  Measure traffic at 30 links only 

 SSDL-based tracker outperforms diffusion wavelets 
 



 Prediction of network processes from incomplete observations 
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Takeaways 

 Spatial correlation of link counts via Laplacian regularization 

 Online algorithms capturing temporal correlations 

 Semi-supervised learning 

 Link count prediction based on dictionary learning 



 
 Dynamic network delay cartography 

 
 Unveiling network anomalies via sparsity and low rank 

 
 Network-wide link count prediction 
 
 RF cartography for cognition at the PHY 
 Interference spectrum cartography 
 Channel gain cartography 

 
 Conclusions and future research directions 

61 

Roadmap 
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 Fixed radio 
 Policy-based: parameters set by 

operators 
 

 Software-defined radio (SDR) 
 Programmable: can adjust 

parameters to intended link 
 

 Cognitive radio (CR) 
 Intelligent: sense the environment 

& learn to adapt [Mitola’00] 

RX 

TX 

CR 

Dynamic 
Resource 
Allocation 

RF 
environment 

- sensing 
- learning 

- adapting to  
  spectrum  

What is a cognitive radio? 

 Cognizant transceiver: sensing 
 Agile transmitter: adaptation 
 Intelligent DRA: decision making 
 Radio reconfiguration decisions 
 Spectrum access decisions 
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US FCC 

Inefficient occupancy 

0       1        2       3        4       5      6GHz 

P
S

D
 

Spectrum scarcity problem 

 Fixed spectrum access policies 
 Useful radio spectrum pre-assigned 
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PSD 

f 

SU 

PU1 

PU2 
PU3 

noise 
floor 

PSD 

f 

SU 
PU1 

PU2 

PU3 

Dynamical access under user hierarchy 

 Spectrum underlay 
 Restriction on transmit power levels 
 Operation over ultra wide bandwidths 

 Spectrum overlay 
 Constraints on when and where to transmit  
 Avoid interference to Pus via sensing and adaptive allocation 

 Primary users (PUs) versus secondary users (SUs/CRs) 

Spectrum underlay Spectrum overlay 
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Source: Office of  
Communications (UK) 

Cooperative sensing for efficient sharing 
 Multiple CRs jointly detect the spectrum [Ganesan-Li’06][Ghasemi-Sousa’07] 

 Benefits of cooperation 
 Spatial diversity gain mitigates multipath fading/shadowing 
 Reduced sensing time and local processing 
 Ability to cope with hidden terminal problem 

 Limitation: existing approaches do not exploit space-time dimensions 
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J. A. Bazerque and G. B. Giannakis, “Distributed spectrum sensing for cognitive radio networks by 
exploiting sparsity,'’ IEEE Transactions on Signal Processing, pp. 1847-1862, March 2010.  
 

Cooperative PSD cartography 
 Idea: CRs collaborate to form a spatial map of the RF spectrum 

Goal:  Find PSD map                across  
 
space              and frequency  

 Specifications: coarse approx. suffices 

 Approach: basis expansion of 
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Modeling 
 Transmitters 

 Sensing CRs 

 Frequency bases 

 Sensed frequencies 

 Sparsity present in space and frequency 



 Data                   Rx-power at cognitive radio 

Space-frequency basis expansion 
 Find                   Tx-power of source s over frequency band 

68 

 Estimate sparse    to find PSD at 

Sparsity-promoting 
regularization 
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Exchange of local  
        estimates       

Scalability 

 Robustness 
Lack of infrastructure 

 

Decentralized 
 
 
 Ad-hoc 

Centralized 
 
 
 Fusion  

center 

Distributed recursive implementation 

 Consensus-based approach 
 Solve locally 

 Constrained optimization using ADMM 



RF spectrum cartography 
    sources 
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  NNLS    Lasso 

 As a byproduct, Lasso localizes all sources via variable selection 

                   candidate locations,                 CRs 
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 Centralized sensing  
 No fading 
 Ns=25 

 4 CR Rxs 

2 CR Txs 

Simulated test: PSD map estimation 
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“True” Tx  
spectrum 

Sensed at the  
   consensus step 

Distributed consensus with fading 

 Starting from a local estimate, sensors reach consensus 
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J. A. Bazerque, G. Mateos, and G. B. Giannakis, ``Group-Lasso on Splines for Spectrum 
Cartography,’’ IEEE Transactions on Signal Processing,’’ pp. 4648-4663, October 2011. 

Spline-based PSD cartography 
 Q: How about shadowing?   

             : unknown dependence on spatial variable x 

Path-loss Shadowing 

 A: Basis expansion with coefficient functions 
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Frequency basis expansion 
 PSD of Tx source                          is  

 

Basis expansion in frequency 

 Basis functions 
 Accommodate prior knowledge       raised-cosine 
 Sharp transitions (regulatory masks)       rectangular, non-overlapping 
 Overcomplete basis set (large     )        robustness 



75 

Spatial PSD model  
 Spatial loss function                                 Unknown  

 Per sub-band factorization in space and frequency (indep. of      ) 

 BEM:  

 Goal: estimate PSD atlas as 



Nonparametric basis pursuit 

 Twofold regularization of variational LS estimator 
 

(P1) 

 Available data: 
 
      location of CRs 
 
      measured frequencies 

Observations 
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 Avoid overfitting by promoting smoothness 

 Nonparametric basis selection (                      not  selected) 
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Thin-plate splines solution 

 Unique, closed-form, finitely-parameterized minimizers! 

 Proposition 1: Estimates           in (P1) are thin-plate splines [Duchon’77]  
 

 
  
  where           is the radial basis function                               , and 

 Q2: How does (P1) perform basis selection? 

 Q1: How to estimate                    based on    ? 
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Lassoing bases 
 (P1) equivalent to group Lasso estimator [Yuan-Lin’06] 

 Matrices (      and      dependent) 
 

 i) ii) iii) 

 Group Lasso encourages sparse factors  
 Full-rank mapping:   

Proposition 2:  

as             

w/ 

Minimizers               of   (P1) are fully determined by  
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Simulated test  
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Basis index  Frequency (Mhz) 

              sources; raised cosine pulses 
               sensing CRs,              sampling frequencies 
                               bases; (roll off x center frequency x bandwidth) 

Original Estimated 
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Numerical test IEEE 802.11  
                                                                                 PUs 

PSD cartography 

 Maps estimated under fading + shadowing + overlapping bases 

                 CRs 

Original Estimated 

Channel 6 

Channel 11 
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Real RF data 
 

 Frequency bases identified 
 Maps recovered and extrapolated 

 IEEE 802.11 WLAN activity sensed 

                 CRs 
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Semi-supervised DL for PSD maps 

S.-J. Kim and G. B. Giannakis, "Cognitive Radio Spectrum Prediction using Dictionary Learning,"  
Proc. of Globecom Conf., Atlanta, GA,  2013. 

 Signal model 

 Rx-power measured by a few CRs 

 Batch formulation 

 Online algorithm via exponentially weighted criterion 
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Numerical tests 
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Recap: PHY sensing via RF cartography 

S.-J. Kim, E. Dall’Anese, and G. B. Giannakis,“Cooperative Spectrum Sensing for Cognitive Radios 
using Kriged Kalman Filtering,” IEEE J. Selected Topics in Signal Processing,  pp. 24-36, Feb. 2011.  

 Power spectral density (PSD) maps 

 Capture ambient power in space-time-frequency 

 Can identify “crowded” regions to be avoided 

 Channel gain (CG) maps 

 Time-frequency channel from any-to-any point 

 CRs adjust Tx power to min. PU disruption 



E. Dall’Anese, S.-J. Kim, and G. B. Giannakis, “Channel Gain Map Tracking via Distributed Kriging,”   
IEEE Trans.  on Vehicular Technology,  pp. 1205-1211, March 2011.  85 

Kalman 
filtering 

Kriging 
interpolation 

Approach: spatial LMMSE interpolation (Kriging) + KF for tracking channel dynamics  

       Payoffs: tracking PU activities;  
                      accurate interference models;  
                      efficient resource allocation  

Outlook: jointly optimal PHY  
                CR sensing and access    

Channel gain cartography 
 CG after averaging small-scale fading (dB) 

 State-space model for shadowing 
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Approach: low-rank matrix completion 

       Payoffs: global view of any-to-any CGs;  
                      real-time propagation metrics;  
                      efficient resource allocation  

Outlook: kernel-based extrapolator for missing CR-to-PU measurements, 
                or future time intervals    

Any-to-any CG estimation 
 Shadowing model-free approach  

 Slow variations in shadow fading 

 Low-rank any-to-any CG matrix 

Estimated CG map 

S.-J. Kim and G. B. Giannakis, “Dynamic Network Learning for Cognitive Radio Spectrum Sensing,”  
Proc. of Intl. Workshop on Comp. Advances in Multi-Sensor Adaptive Process., Saint Martin,  2013. 
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Approach: blind dictionary learning 

       Payoffs: tracking PU activities;  
                      efficient resource allocation  

Outlook: missing data due to limited sensing; 
                distributed and robust algorithms 

PU power and CR-PU link learning 
 Reduce overhead in any-to-any CG mapping  

 Learn CGs only between CRs and PUs 

Detection of PU activity 

Estimated CG 

 Online detection of active PU transmitters 

S.-J. Kim, N. Jain, and G. B. Giannakis, “Joint Link Learning and Cognitive Radio Sensing," in Proc. of   
Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2011.  
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Takeaways 
 PHY layer spatiotemporal sensing via RF cartography 
 Space-time-frequency view of interference and channel gains 

 PU/source localization and tracking 

 Parsimony via sparsity and distribution via consensus 
 Lasso, group Lasso on splines, and method of multipliers 

 Identify idle bands across space 
 Aid dynamic spectrum access policies 



 
 Dynamic network delay cartography 

 
 Unveiling network anomalies via sparsity and low rank 

 
 Network-wide link count prediction 
 
 RF cartography for cognition at the PHY 
 
 Conclusions and future research directions 
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Roadmap 



90 

The big picture ahead… 
Network path delay maps 
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RF interference cartography 

Channel gain maps Coverage maps 

 Network cartography: succinct depiction of the network state 

 Vision: use atlas to enable spatial re-use, hand-off, localization, Tx-power       
     tracking, resource allocation, health monitoring, and routing 
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Concluding summary 
 Dynamic network cartography 

 Global state mapping from incomplete and corrupted data 

 Statistical SP toolbox 
 Sparsity-cognizant learning, low-rank modeling 

 Framework to construct maps of the dynamic network state 
 Real-time, distributed scalable algorithms for large-scale networks 

 Path delay and link traffic maps 
 Prompt and accurate identification of traffic anomalies 
 PHY layer sensing in wireless CR networks via RF cartography 

 Kriged Kalman filtering of dynamical processes over networks 
 Semi-supervised dictionary learning 
 Distributed optimization via the ADMM Thank you! 
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Questions? 

http://spincom.umn.edu 
University of Minnesota 

Dr. J. A. Bazerque 
UofM 

Dr. E. Dall’Anese  
UofM 

Dr. P. A. Forero 
SPAWAR 

Dr. S. J. Kim 
UofM 

M. Mardani 
UofM 

Prof. K. Rajawat 
IIT Kanpur 
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