

Cartography for Cognitive Networks

Georgios B. Giannakis

Acknowledgments: Prof. G. Mateos, MURI Grant No. AFOSR FA9550-10-1-0567 NSF Grants ECCS-1202135, AST-1247885, ECCS-1002180

A Coruña, Spain June 22, 2014

Network traffic growth

Communication networks today

- Large-scale interconnection of "smart" devices
- Commercial, consumer-oriented, heterogeneous

IP traffic is growing explosively

"Smart" devices multiply traffic

Service diversification

Residential services

Mobile services

Source: CISCO Visual Networking Index Global Mobile Data Traffic Forecast Update, 2012-2017

Dynamic network cartography

- Accurate network diagnosis and statistical analysis tools
 - Seamless end-user experience in dynamic environments
 - Secure and stable network operation
- Network cartography: succinct depiction of the network state
 - > Tool for statistical modeling, monitoring and management
 - Offers situational awareness of the network landscape

G. Mateos, K. Rajawat, and G. B. Giannakis "Dynamic network cartography," *IEEE Signal Processing Magazine*, May 2013.

Tutorial outlook

- Dynamic network delay and traffic cartography
 - Map network state via limited measurements
 - Monitor network health
- Dynamic anomalography for IP networks
 - Reveal where and when traffic anomalies occur
 - Leverage sparse anomalies and low-rank traffic
- RF cartography for cognition at the PHY
 - Map ambient RF power in space-time-frequency
 - Identify "crowded" regions to be avoided

General context: NetSci analytics

Online social media

@06

Robot and sensor networks

Internet

Biological networks

Clean energy and grid analytics

Square kilometer array telescope

General tools: process, analyze, and learn from large pools of network data

Roadmap

- Dynamic network delay cartography
 - Kriged Kalman filter predictor
 - > Optimal network sampling
 - Empirical validation: Internet2 and NZ-AMP data
- Unveiling network anomalies via sparsity and low rank
- Network-wide link count prediction
- RF cartography for cognition at the PHY
- Conclusions and future research directions

Why monitor delays?

- Motivating reasons
 - Assess network health
- Fault diagnosis
- Network planning
- Application domains
 - Old 8-second rule for WWW
 - Content delivery networks
 - Peer-to-peer networks
 - Multiuser games
 - Dynamic server selection

Research issues and goal

Few tools are widely supported, e.g., traceroute, ping

- Additional tools from CAIDA¹
 - Require software installation at intermediate routers
- Useless if intermediate routers not accessible
 Desiderata: infer delays from a limited number of end-to-end measurements only!

¹Cooperative Association for Internet Data Analysis. [Online]. www.caida.org

Problem statement

Consider a network graph with links, nodes, and paths

- Challenges
 - > Overhead: # paths (=: P) ~ $O(\text{# nodes}^2)$
 - Heavily congested routers may drop packets
- **Q:** Can fewer measurements suffice?
 - Most paths tend to share a lot of links [Chua'06]

Inference task

- > Measure \mathbf{y}_s on subset $\mathcal{S} \subset \mathcal{P}$
- > Predict $y_{\bar{s}}$ on remaining paths $\bar{\mathcal{S}} := \mathcal{P} \setminus \mathcal{S}$

Network Kriging prediction

Given $V_{ss} := cov(y_s)$, $V_{\bar{s}s} := cov(y_{\bar{s}}, y_s)$, universal Kriging:

$$\hat{\mathbf{y}}_{ar{s}} = \mathbf{V}_{ar{s}s}\mathbf{V}_{ss}^{-1}\mathbf{y}_s$$

To obtain V_{ss} , $V_{\bar{s}s}$ adopt a linear model for path delays

$$\mathbf{y} = \mathbf{G}\mathbf{x} \qquad [\mathbf{G}]_{pl} = \begin{cases} 1 & \text{link } l \in \text{path } p \\ 0 & \text{otherwise} \end{cases}$$
$$= \begin{bmatrix} \mathbf{y}_s \\ \mathbf{y}_{\bar{s}} \end{bmatrix} = \begin{bmatrix} \mathbf{S} \\ \bar{\mathbf{S}} \end{bmatrix} \mathbf{G}\mathbf{x} \quad \text{cov}(\mathbf{y}) = \begin{bmatrix} \mathbf{V}_{ss} & \mathbf{V}_{s\bar{s}} \\ \mathbf{V}_{\bar{s}s} & \mathbf{V}_{\bar{s}\bar{s}} \end{bmatrix} = \begin{bmatrix} \mathbf{S} \\ \bar{\mathbf{S}} \end{bmatrix} \mathbf{G}\boldsymbol{\Sigma}\mathbf{G}^T \begin{bmatrix} \mathbf{S}^T & \bar{\mathbf{S}}^T \end{bmatrix}$$

Sampling matrix S known (selected via heuristic algorithms)

У

D. B. Chua, E. D. Kolaczyk, and M. Crovella, "Network kriging," *IEEE J. Sel. Areas Communications,* 11 vol. 24, no. 12, pp. 2263–2272, Dec. 2006.

Spatio-temporal prediction

Wavelet-based approach [Coates'07]

- Diffusion wavelet matrix constructed using network topology
- > Can capture temporal correlations, but for τ time slots
- > High complexity ($O(\tau^3 P^3)$) \Rightarrow cannot have $\tau > 10$
- **Q:** Should the same set of paths be measured per time slot?
 - Load balancing? Measurement on random paths?

- Prior art does not jointly offer
 - Spatio-temporal inference with online path selection, at low complexity

M. Coates, Y. Pointurier, and M. Rabbat, "Compressed network monitoring for IP and all-optical networks," in Proc. *ACM Internet Measurement Conf.*, San Diego, CA, Oct. 2007.

Simple delay model

Delay measured on path $p \in \mathcal{P}$

$$y_p(t) = \chi_p(t) + \nu_p(t) + \epsilon_p(t)$$
Component due to traffic queuing:
random-walk with noise cov. C_η
 $\chi(t) = \chi(t-1) + \eta(t)$
Component due to processing, transmission, propagation:
Traffic independent, temporally white, w/ cov. $C_\nu = \alpha G G^T$
Measurement noise i.i.d. over
paths and time with known variance
 $\mathbb{E}[\epsilon_p(t)\epsilon_p^T(t)] = \sigma^2$

K. Rajawat, E. Dall'Anese, and G. B. Giannakis, "Dynamic network delay cartography," *IEEE Transactions on Information Theory*, 2013.

Kriged Kalman Filter: Formulation

Path measured on subset $\mathcal{S} \in \mathcal{P}$

$$\mathbf{y}_s(t) = \mathbf{S}(t)\boldsymbol{\chi}(t) + \boldsymbol{\nu}_s(t) + \boldsymbol{\epsilon}_s(t)$$
$$\boldsymbol{\nu}_s(t) := \mathbf{S}(t)\boldsymbol{\nu}(t)$$

KKF:

$$\boldsymbol{\chi}(t) = \boldsymbol{\chi}(t-1) + \boldsymbol{\eta}(t)$$
$$\mathbf{y}_s(t) = \mathbf{S}(t)\boldsymbol{\chi}(t) + \boldsymbol{\nu}_s(t) + \boldsymbol{\epsilon}_s(t)$$

Goal: Given history $\mathcal{H}(t) := \{\mathbf{y}_s(\tau)\}_{\tau=1}^t$ find $\hat{\mathbf{y}}_{\bar{s}}(t)$

KKF updates

State and covariance recursions

$$\hat{\boldsymbol{\chi}}(t) := \mathbb{E}^*[\boldsymbol{\chi}(t)|\mathcal{H}(t)]$$

$$= \hat{\boldsymbol{\chi}}(t-1) + \mathbf{K}(t)(\mathbf{y}_s(t) - \mathbf{S}(t)\hat{\boldsymbol{\chi}}(t-1))$$

$$\mathbf{M}(t) := \mathbb{E}[(\hat{\boldsymbol{\chi}}(t) - \boldsymbol{\chi}(t))(\hat{\boldsymbol{\chi}}(t) - \boldsymbol{\chi}(t))^T]$$

$$= (\mathbf{I} - \mathbf{K}(t)\mathbf{S}(t))(\mathbf{M}(t-1) + \mathbf{C}_{\boldsymbol{\eta}})$$

KKF gain

 $\mathbf{K}(t) := \left(\mathbf{M}(t-1) + \mathbf{C}_{\boldsymbol{\eta}}\right)\mathbf{S}^{T}(t)\left[\mathbf{S}(t)\left(\mathbf{M}(t-1) + \mathbf{C}_{\boldsymbol{\eta}} + \mathbf{C}_{\boldsymbol{\nu}}\right)\mathbf{S}^{T}(t) + \sigma^{2}\mathbf{I}\right]^{-1}$

Kriging predictor

 $\hat{\mathbf{y}}_{\bar{s}}(t) = \bar{\mathbf{S}}(t)\hat{\boldsymbol{\chi}}(t) + \bar{\mathbf{S}}(t)\mathbf{C}_{\boldsymbol{\nu}}\mathbf{S}^{T}(t)\left[\mathbf{S}(t)\mathbf{C}_{\boldsymbol{\nu}}\mathbf{S}^{T}(t) + \sigma^{2}\mathbf{I}\right]^{-1}\left(\mathbf{y}_{s}(t) - \mathbf{S}(t)\hat{\boldsymbol{\chi}}(t)\right)$

Which paths to measure?

KKF can model and track network-wide delays

Practical sampling of paths? Optimal measurements? Criterion?

Error covariance matrix

$$\mathbf{M}_{\bar{s}}^{\mathbf{y}}(t) := \mathbb{E}\left\{ \left(\mathbf{y}_{\bar{s}}(t) - \hat{\mathbf{y}}_{\bar{s}}(t)\right) \left(\mathbf{y}_{\bar{s}}(t) - \hat{\mathbf{y}}_{\bar{s}}(t)\right)^{T} \right\}$$
$$= \sigma^{2} \mathbf{I}_{\bar{S}} + \sigma^{2} \bar{\mathbf{S}}(t) \left[\mathbf{\Phi}^{-1} + \mathbf{S}^{T}(t)\mathbf{S}(t)\right]^{-1} \bar{\mathbf{S}}^{T}(t)$$
$$\mathbf{\Phi} = \left(\mathbf{M}(t-1) + \mathbf{C}_{\boldsymbol{\eta}} + \mathbf{C}_{\boldsymbol{\nu}}\right) / \sigma^{2}$$

• Online experimental design: minimize $\log \det(\mathbf{M}_{\bar{s}}^{\mathbf{y}}(t)) =: -f_t(\mathcal{S})$

$$\mathcal{S}^*(t) := \arg \max_{\mathcal{S} \subset \mathcal{P}} f_t(\mathcal{S})$$

subject to $|\mathcal{S}| = S$

Log-det: D-optimal design (entropy of a Gaussian r. v.)

Greedy algorithm

<u>Algorithm</u>

Repeat S times

 $\mathcal{S} \leftarrow \mathcal{S} \cup \arg \max_{p \notin \mathcal{S}} \delta_{\mathcal{S}}(p)$

Submodular + monotonic \Rightarrow greedy solution $\left(1 - \frac{1}{e}\right)$ optimal [Nemhauser'78]

Increments can be evaluated efficiently: $O(PS^3)$ with $P \gg S$

- Operational complexity can be reduced further [Krause'11]
- Can be modified to handle cases when
 - Each node measures delay on all paths which S nodes to choose?
 - All nodes measure delay on only one path which path to choose?

A. Krause, C. Guestrin. "Submodularity and its Applications in Optimized Information Gathering: An Introduction", *ACM Transactions on Intelligent Systems and Technology*, vol. 2 (4), July 2011

Empirical validation: Internet2

- Internet2 backbone
 - 72 paths
 - Lightly loaded

- One-way delay measurements using OWAMP
- Measurements every minute for 3 days in July 2011 ~ 4500 samples
- Training phase employed to estimate \mathbf{C}_{n} , α
 - Empirical estimates; see e.g., [Myers'76]
 - Techniques modified to handle measurements on subset of paths
 - First 1000 samples used for training; 50 random paths used for training

Network delay cartography (Internet2)

Normalized MSPE (Internet2)

Normalized MSPE :=
$$\frac{1}{T(P-S)} \sum_{t=1}^{T} \|\hat{\mathbf{y}}_{\bar{s}}(t) - \mathbf{y}_{\bar{s}}(t)\|^2$$

Empirical validation: NZ-AMP

Delays measured on NZ-AMP, part of NLANR project

186 paths, heavily loaded network

Measurements every 10 minutes during August 2011 ~ 4500 samples

Round-trip times measured using ICMP, paths via scamper

Normalized MSPE (NZ-AMP)

Random path selection

"Optimal" path selection

Takeaways

Spatio-temporal inference useful for network health monitoring

Dynamic network delay cartography via Kriged Kalman filtering

Near-optimal path selection by utilizing submodularity

Empirical validation on Internet2 and NZ-AMP datasets

Roadmap

Dynamic network delay cartography

Unveiling network anomalies via sparsity and low rank

- Traffic modeling and identifiability
- > (De-) centralized and online algorithms
- Numerical tests
- Network-wide link count prediction
- RF cartography for cognition at the PHY

Conclusions and future research directions

Traffic anomalies

Backbone of IP networks

- **Traffic anomalies**: changes in origin-destination (OD) flows
 - Failures, transient congestions, DoS attacks, intrusions, flooding

Motivation: Anomalies \Rightarrow congestion \Rightarrow limits end-user QoS provisioning

Objective: Measuring superimposed OD flows per link, identify anomalies by leveraging sparsity of anomalies and low-rank of traffic.

Model

Graph G(N, L) with N nodes, L links, and F flows (F >> L)

Matrix model across T time slots: $\mathbf{Y} = \mathbf{R}(\mathbf{Z} + \mathbf{A}) + \mathbf{V}$ $L \times T$ $L \times F$

Low rank of traffic matrix

$$\mathbf{Y} = \mathbf{R}(\mathbf{Z} + \mathbf{A}) + \mathbf{V}$$

Z: traffic matrix has low rank, e.g., [Lakhina et al'04]

Data: http://math.bu.edu/people/kolaczyk/datasets.html

Sparsity of anomaly matrix

$$\mathbf{Y} = \mathbf{R}(\mathbf{Z} + \mathbf{A}) + \mathbf{V}$$

A: anomaly matrix is sparse across both time and flows

Problem statement

$$\mathbf{Y} = \underbrace{\mathbf{RZ}}_{:=\mathbf{X}} + \mathbf{RA} + \mathbf{V}$$

Given ${\bf Y}$ and routing matrix ${\bf R}$, identify sparse ${\bf A}$ when $\,{\bf Z}\,$ is low rank

 $ightarrow {f R}$ fat but ${f X}$ still low rank

$$\{\hat{\mathbf{X}}, \hat{\mathbf{A}}\} = \arg\min_{\{\mathbf{X}, \mathbf{A}\}} \frac{1}{2} \|\mathbf{Y} - \mathbf{X} - \mathbf{R}\mathbf{A}\|_{F}^{2} + \lambda_{1} \|\mathbf{A}\|_{1} + \lambda_{*} \|\mathbf{X}\|_{*}$$
(P1)
$$\sum_{i,j} |a_{i,j}|$$
$$\sum_{i,j} \sigma_{i}(\mathbf{X})$$

Low-rank \Rightarrow sparse vector of SVs \Rightarrow nuclear norm $\|\cdot\|_*$ and ℓ_1 norm

Prior art

- Anomaly identification
 - Change detection on per-link time series [Brutlag'00], [Casas et al'10]
 - Spatial PCA [Lakhina et al'04]

 $\mathbf{M} = \mathbf{L}_0 + \mathbf{S}_0$

- Network anomography [Zhang et al'05]
- Rank minimization with the nuclear norm, e.g., [Recht-Fazel-Parrilo'10]
 - Matrix decomposition [Candes et al'10], [Chandrasekaran et al'11]

$$= +$$

$$Constant + Constant + Co$$

Principal Component Pursuit

$$\min_{\mathbf{L},\mathbf{S}} \|\mathbf{L}\|_* + \lambda \|\mathbf{S}\|_1$$
 (PCP)
s. to $\mathbf{M} = \mathbf{L} + \mathbf{S}$

Challenges and importance

$$\mathbf{Y} = \mathbf{X} + \mathbf{R}\mathbf{A} + \mathbf{V}$$

 \blacksquare RA not necessarily sparse and R fat \Rightarrow PCP not applicable

- R = I: matrix decomposition with PCP [Candes et al'10]
- X = 0 : compressive sampling with basis pursuit [Chen et al'01]
- > $X = C_{Lx\rho}W'_{\rho xT}$ and A = 0: PCA [Pearson 1901]
- X = 0, R = D unknown: dictionary learning [Olshausen'97]

Exact recovery

- Noise-free case
- $\mathbf{Y} = \mathbf{X}_0 + \mathbf{R}\mathbf{A}_0 = \mathbf{U}\mathbf{\Sigma}\mathbf{V}' + \mathbf{R}\mathbf{A}_0$
- $r = \operatorname{rank}[\mathbf{X}_0], \ s = \|\mathbf{A}_0\|_0$

$$\min_{\{\mathbf{X},\mathbf{A}\}} \|\mathbf{X}\|_* + \lambda \|\mathbf{A}\|_1$$

s.to $\mathbf{Y} = \mathbf{X} + \mathbf{R}\mathbf{A}$

(P0)

- **Q**: Can one recover sparse \mathbf{A}_0 and low-rank \mathbf{X}_0 exactly?
- A: Yes! Under certain conditions on $\{X_0, A_0, R\}$

Theorem: Given \mathbf{Y} and \mathbf{R} , assume every row and column of \mathbf{A}_0 has at most k < s non-zero entries, and \mathbf{R} has full row rank. If C1)-C2) hold, then with $\lambda \in (\lambda_{\min}, \lambda_{\max})$ (P0) exactly recovers $\{\mathbf{X}_0, \mathbf{A}_0\}$

C1)
$$(1 - \mu(\Phi, \Omega_R))^2 (1 - \delta_k(\mathbf{R})) > \alpha$$

C2) $\lambda_{\min} := \beta \|\mathbf{R}' \mathbf{U} \mathbf{V}'\|_{\infty} < \lambda_{\max} := \sqrt{s^{-1}} [\gamma^{-1} - \mu(\Phi, \Omega_R) \sqrt{r(1 + \delta_k(\mathbf{R}))}]$

M. Mardani, G. Mateos, and G. B. Giannakis, ``Recovery of low-rank plus compressed sparse matrices with application to unveiling traffic anomalies," *IEEE Trans. Information Theory*, 2013.

- Exact recovery conditions satisfied if
 - r and s are sufficiently small
 - > Nonzero entries of A_0 are "sufficiently spread out"
 - Incoherent rank and sparsity- preserving subspaces
 - R satisfies a restricted isometry property
- Remarks
 - > Amplitude of non-zero entries of A_0 irrelevant
 - Conditions satisfied for certain random ensembles w.h.p.

Numerical validation

Setup

$$L=105, F=210, T = 420$$

R ~ Bernoulli(1/2)
X_o = **RPQ**', **P**, **Q** ~ N(0, 1/*FT*)
 $a_{ij} \in \{-1,0,1\}$ w.p. { $\pi/2, 1-\pi, \pi/2$ }

Relative recovery error

$$e = \frac{\|\hat{\mathbf{A}} - \mathbf{A}_0\|_F}{\|\mathbf{A}_0\|_F}$$

In-network processing

Spatially-distributed link count data

Goal: Given local link counts per agent, unveil anomalies in a distributed fashion by leveraging low-rank of the nominal data matrix and sparsity of the outliers.

Challenge: $\|\cdot\|_*$ not separable across rows (links/agents)
Separable regularization

Key property

Separable formulation equivalent to (P1)

$$\min_{\{\mathbf{C},\mathbf{W},\mathbf{A}\}} \frac{1}{2} \|\mathbf{Y} - \mathbf{C}\mathbf{W}' - \mathbf{R}\mathbf{A}\|_{F}^{2} + \lambda_{1} \|\mathbf{A}\|_{1} + \frac{\lambda_{*}}{2} \{\|\mathbf{C}\|_{F}^{2} + \|\mathbf{W}\|_{F}^{2}\}$$
(P2)

 \mathbf{X}

> Nonconvex; less variables: $LT \Rightarrow \rho(L+T)$

Proposition 3: If $\{\overline{\mathbf{C}}, \overline{\mathbf{W}}, \overline{\mathbf{A}}\}$ stat. pt. of (P2) and $\|\mathbf{Y} - \overline{\mathbf{C}}\overline{\mathbf{W}}' - \mathbf{R}\overline{\mathbf{A}}\| \le \lambda_*$, then $\{\widehat{\mathbf{X}} := \overline{\mathbf{C}}\overline{\mathbf{W}}', \widehat{\mathbf{A}} := \overline{\mathbf{A}}\}$ is a global optimum of (P1).

Ŵ'

Distributed algorithm

Alternating-direction method of multipliers (ADMM) solver for (P2)

- Method [Glowinski-Marrocco'75], [Gabay-Mercier'76]
- Learning over networks [Schizas-Ribeiro-Giannakis'07]

M. Mardani, G. Mateos, and G. B. Giannakis, "In-network sparsity regularized rank minimization: Algorithms and applications," *IEEE Transactions on Signal Processing*, 2013.

Benchmark: PCA-based methods

Idea: anomalies increase considerably rank(Y)

<u>Algorithm</u>

i) Form subspace \mathcal{N} via *r*-dominant left singular vectors of **Y** (resp. \mathcal{N}^c)

ii) Infer anomalies from $\mathcal{P}_{\mathcal{N}^c}(\mathbf{Y})$

Assumes knowledge of r:=rank(X)

Lakhina et al'04] For $t = 1, ..., T \|\mathcal{P}_{\mathcal{N}^c}(\mathbf{y}_t)\|_2 \gtrsim_{H_0}^{H_1} \tau$

I [Zhang et al'05] Sparse anomalies $\hat{\mathbf{A}} = \arg \min_{\mathcal{P}_{\mathcal{N}^c}(\mathbf{Y}) = \mathbf{R}\mathbf{A}} \|\mathbf{A}\|_1$

Synthetic data

Random network topology

0.8

0.6

0.2

0

Ó)

0.2

0.4

False alarm probability

0.6

Detection probability

- N=20, L=108, F=360, T=760 \succ
- Minimum hop-count routing \succ

Internet2 data Seattle Chicago Inclanadolis Denver Sunnyvale Real network data Kansas City Washington os Angelos Dec. 8-28, 2008 \succ Atlanta *N*=11, *L*=41, *F*=121, *T*=504 \succ Houston ---- True **Detection probability** 0.8 Estimated 6 $P_{fa} = 0.03$ 5 [Lakhina04], rank=1 .60 $P_d = 0.92$ Anomaly volume [Lakhina04], rank=2 3 [Lakhina04], rank=3 Proposed method 2 [Zhang05], rank=1 2 [Zhang05], rank=2 [Zhang05], rank=3 100 500 0 400 0.2 0.4 0.6 0.8 0 300 50 Flows 200 False alarm probability 100 0 0 Time

Data: http://www.cs.bu.edu/~crovella/links.html

Dynamic anomalography

- Construct an estimated map of anomalies in real time
- Streaming data model:

$$\mathcal{P}_{\mathcal{S}_t}(\mathbf{y}_t) = \mathcal{P}_{\mathcal{S}_t}(\mathbf{x}_t + \mathbf{R}_t \mathbf{a}_t + \mathbf{v}_t), \ t = 1, 2, \dots \quad \mathbf{x}_t := \mathbf{R}_t \mathbf{z}_t$$

Goal: Given $\{\mathcal{P}_{\mathcal{S}_i}(\mathbf{y}_i), \mathbf{R}_i\}_{i=1}^t$ estimate $(\mathbf{x}_t, \mathbf{a}_t)$ online when $\{\mathbf{x}_t\}$ is in a low-dimensional space and $\{\mathbf{a}_t\}$ is sparse

(Robust) subspace tracking

- Projection approximation (PAST) [Yang'95]
- Missing data: GROUSE [Balzano et al'10], PETRELS [Chi et al'12]
- Outliers: [Mateos-Giannakis'10], GRASTA [He et al'11]
- Compressed "outliers" challenge identifiability

M. Mardani, G. Mateos, and G. B. Giannakis, "Dynamic anomalography: Tracking network anomalies via sparsity and low rank," *IEEE Journal of Selected Topics in Signal Processing*, pp. 50-66, Feb. 2013. ⁴³

Online estimator

- Challenge: $\|\cdot\|_*$ not separable across columns (time) $\Rightarrow \mathbf{x}_t = \mathbf{C}\mathbf{w}_t$
- Approach: regularized exponentially-weighted LS formulation

$$\min_{\{\mathbf{C},\mathbf{W},\mathbf{A}\}} \sum_{\tau=1}^{t} \beta^{t-\tau} \left[\frac{1}{2} \| \mathcal{P}_{\mathcal{S}_{\tau}}(\mathbf{y}_{\tau} - \mathbf{C}\mathbf{w}_{\tau} - \mathbf{R}_{\tau}\mathbf{a}_{\tau}) \|_{2}^{2} + \frac{\lambda_{*}}{2\sum_{u=1}^{t} \beta^{t-u}} \|\mathbf{C}\|_{F}^{2} + \frac{\lambda_{*}}{2} \|\mathbf{w}_{\tau}\|_{2}^{2} + \lambda_{1} \|\mathbf{a}_{\tau}\|_{1} \right]$$

Delay cartography

- Network distance prediction [Liau et al'12]
- Approach: distributed low-rank matrix completion
- Internet2 data (Aug 18-22,2011)
 - End-to-end latency matrix
 - N=9, L=T=N; 20% missing data

Data: http://internet2.edu/observatory/archive/data-collections.html

Takeaways

Unveiling network traffic anomalies via convex optimization
Leveraging sparsity and low rank

Reveal when and where anomalies occur

Exact recovery of low-rank plus compressed sparse matrices

Distributed/online algorithms with guaranteed performance

Roadmap

Dynamic network delay cartography

Unveiling network anomalies via sparsity and low rank

Network-wide link count prediction

- Semi-supervised learning for traffic maps
- Batch and online processing
- Empirical validation: Internet2 data
- RF cartography for cognition at the PHY

Conclusions and future research directions

A commuting conundrum

Objective: map a "good" route for packet delivery

Measure traffic at few roads/links only

- Application domains
- Transportation networks [Gastner-Newman'04]
- Communication networks [Soule et al'05]
- Sensor networks [Abrams et al'04]

Model

Graph G(N, L) with N nodes, L links, and F flows (F >> L)

```
(as) Single-path per OD flow z_{f,t}
```

Packet counts per link *I* and time slot *t*

$$y_{l,t} = \sum_{f=1}^{F} r_{l,f} x_{f,t} + v_{l,t}$$

 $\in (0,1)$

Incomplete, noisy measurements on a subset of links $l\in\mathcal{S}_t$

$$\mathcal{P}_{\mathcal{S}_t}(\mathbf{y}_t) = \mathcal{P}_{\mathcal{S}_t}(\mathbf{R}\mathbf{x}_t + \mathbf{v}_t)$$

$$[\mathcal{P}_{\mathcal{S}_t}(\mathbf{y}_t)]_l = \begin{cases} y_{l,t}, & l \in \mathcal{S}_t \\ 0, & l \not\in \mathcal{S}_t \end{cases}$$

Problem statement

Goal: Given $\mathcal{P}_{\mathcal{S}_{t'}}(\mathbf{y}_{t'}), \mathbf{R}$ and historical data $\{\mathcal{P}_{\mathcal{S}_t}(\mathbf{y}_t)\}_{t=1}^T$, find $\hat{\mathbf{y}}_t, t' > T$

Prior art

- > Traffic estimation $\hat{\mathbf{y}}_{t'} = \mathbf{R}\hat{\mathbf{x}}_{t'}$ [Zhang et al'05]
- Kriging [Chua et al'06], plus traffic modeling [Vaughn et al'10]
- Topology-driven basis expansion [Crovella-Kolaczyk'03], [Coates et al'07]

Impact

- Ability to handle missing data
- Online prediction capturing spatio-temporal correlations
- Computationally-efficient link traffic prediction

Data-driven model of link counts

Sparse representation of link counts $\mathbf{y}_t = \mathbf{D}\mathbf{s}_t$ $L \times Q, \ (L \le Q)$

Notation:
$$\mathcal{D} := \{ \mathbf{D} = [\mathbf{d}_1, \dots, \mathbf{d}_Q] \in \mathbb{R}^{L \times Q} : \|\mathbf{d}_q\| \le 1, \forall q \}$$

 $\mathbf{S} := [\mathbf{s}_1, \dots, \mathbf{s}_T]$

Dictionary Learning (DL) [Olshausen-Field'97] Given $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_T]$, find dictionary (basis) \mathbf{D} and sparse \mathbf{S} $(\hat{\mathbf{S}}, \hat{\mathbf{D}}) = \arg\min_{\mathbf{S}, \mathbf{D} \in \mathcal{D}} \|\mathbf{Y} - \mathbf{DS}\|_F^2 + \lambda \|\mathbf{S}\|_1$

Q: How about DL from incomplete data $\{\mathcal{P}_{\mathcal{S}_t}(\mathbf{y}_t)\}_{t=1}^T$?

Capturing spatial link dependence

- Auxiliary graph \mathcal{G} with vertices = links in \mathcal{G}
 - > Edge weights $w_{l,l'}$ = number of OD flows common to links l, l'
 - > Adjacency matrix: $\mathbf{W} = \mathbf{R}\mathbf{R}'$, graph Laplacian $\mathbf{L} = \operatorname{diag}(\mathbf{W}\mathbf{1}_L) \mathbf{W}$

Cost function to learn D

$$C_t(\mathbf{D}, \mathbf{s}_t) := \|\mathcal{P}_{\mathcal{S}_t}(\mathbf{y}_t - \mathbf{D}\mathbf{s}_t)\|_2^2 + \lambda_1 \|\mathbf{s}_t\|_1 + \lambda_2 \mathbf{s}_t' \mathbf{D}' \mathbf{L} \mathbf{D}\mathbf{s}_t$$

Regularizers effect sparsity and smoothness over ${\cal G}$

$$\mathbf{s}_{t}'\mathbf{D}'\mathbf{L}\mathbf{D}\mathbf{s}_{t} = \frac{1}{2}\sum_{l=1}^{L}\sum_{l'=1}^{L}w_{l,l'}(x_{l,t} - x_{l',t})^{2}$$

Semi-supervised DL

Semi-supervised Dictionary Learning (SSDL)

Given $\{\mathcal{P}_{\mathcal{S}_t}(\mathbf{y}_t)\}_{t=1}^T$, \mathbf{R} , find dictionary (basis) \mathbf{D} and sparse \mathbf{S} $(\hat{\mathbf{S}}, \hat{\mathbf{D}}) = \arg\min_{\mathbf{S}, \mathbf{D} \in \mathcal{D}} \sum_{t=1}^T C_t(\mathbf{D}, \mathbf{s}_t)$

SSDL biconvex, block-coordinate descent (BCD) solver
Update {s_t}^T_{t=1} via parallel entry-wise soft-thresholding
Update each D via QP + projection onto the Euclidean ball

Link load prediction

Given $\mathcal{P}_{\mathcal{S}_{t'}}(\mathbf{y}_{t'})$ and learnt dictionary $\hat{\mathbf{D}}$, solve

$$\hat{\mathbf{s}}_{t'} := \arg\min_{\mathbf{s}} \|\mathcal{P}_{\mathcal{S}_{t'}}(\mathbf{y}_{t'} - \hat{\mathbf{D}}\mathbf{s})\|_2^2 + \lambda_1 \|\mathbf{s}\|_1 + \lambda_2 \mathbf{s'} \hat{\mathbf{D}'} \mathbf{L} \hat{\mathbf{D}}\mathbf{s}$$

 \succ Captures sparsity of $\mathbf{s}_{t'}$ and smoothness of link loads over $\mathcal G$

Predict $\mathbf{y}_{t'}$ based on $\hat{\mathbf{s}}_{t'}$

$$\hat{\mathbf{y}}_{t'} = \hat{\mathbf{D}}\hat{\mathbf{s}}_{t'}$$

Scaling factor $(1 + \lambda_2)$ reduces bias in $\hat{\mathbf{y}}_{t'}$ [Zou-Hastie'05]

Test case: Internet2

Internet2 measurement archive

▶ L=54, T=2000

Prediction improves as link load increases

Prediction error (Internet2)

- Normalized prediction error: NPE := $\frac{1}{Lt_0} \sum_{\tau=1}^{t_0} \|\mathbf{y}_{\tau} \hat{\mathbf{y}}_{\tau}\|_2^2$
 - > Q = number of columns of D; t_0 =2000
- Gravity-based [Zhang et al'05]; Diffusion wavelets [Coifman-Maggioni'07]

SSDL outperforms competing alternatives

Online processing

Capture temporal correlations on $\{s_{ au}\}$

 $C_{\beta}^{t}(\mathbf{D}_{t},\mathbf{s}) := \sum_{\tau=1}^{t} \beta^{t-\tau} \|\mathcal{P}_{\mathcal{S}_{\tau}}(\mathbf{y}_{\tau} - \mathbf{D}_{t}\mathbf{s})\|_{2}^{2} + \lambda_{1} \|\mathbf{s}\|_{1} + \lambda_{2}\mathbf{s}'\mathbf{D}_{t}'\mathbf{L}\mathbf{D}_{t}\mathbf{s}$

Given $\mathcal{P}_{\mathcal{S}_t}(\mathbf{y}_t)$ and dictionary \mathbf{D}_t , solve $\mathbf{s}_t := \arg\min_{\mathbf{s}} C^t_{\beta}(\mathbf{D}_t, \mathbf{s})$

Predict \mathbf{y}_t based on \mathbf{s}_t

$$\hat{\mathbf{y}}_t = (1 + \lambda_2) \mathbf{D}_t \mathbf{s}_t$$

Dictionary update $\mathbf{D}_{t+1} = \arg\min_{\mathbf{D}\in\mathcal{D}} \frac{1}{t} \sum_{\tau=1}^{t} C_{\beta}^{\tau}(\mathbf{D}, \mathbf{s}_{\tau})$

Real-time prediction (Internet2)

- Q=60, different values of the forgetting factor β
 - Measure traffic at 30 links only

ad

Time

SSDL-based tracker outperforms diffusion wavelets

Takeaways

Prediction of network processes from incomplete observations
Link count prediction based on dictionary learning

Spatial correlation of link counts via Laplacian regularization
Semi-supervised learning

Online algorithms capturing temporal correlations

Roadmap

Dynamic network delay cartography

Unveiling network anomalies via sparsity and low rank

Network-wide link count prediction

RF cartography for cognition at the PHY

- Interference spectrum cartography
- Channel gain cartography

Conclusions and future research directions

What is a cognitive radio?

Fixed radio

- Policy-based: parameters set by operators
- Software-defined radio (SDR)
 - Programmable: can adjust parameters to intended link

Cognitive radio (CR)

Intelligent: sense the environment & learn to adapt [Mitola'00]

- Cognizant transceiver: sensing
- Agile transmitter: adaptation
- Intelligent DRA: decision making
 - Radio reconfiguration decisions
 - Spectrum access decisions

Spectrum scarcity problem

Dynamical access under user hierarchy

Primary users (PUs) versus secondary users (SUs/CRs)

Spectrum underlay

- Restriction on transmit power levels
- Operation over ultra wide bandwidths

Spectrum overlay

- Constraints on when and where to transmit
- Avoid interference to Pus via sensing and adaptive allocation

Cooperative sensing for efficient sharing

Multiple CRs jointly detect the spectrum [Ganesan-Li'06][Ghasemi-Sousa'07]

Source: Office of Communications (UK)

Benefits of cooperation

- Spatial diversity gain mitigates multipath fading/shadowing
- Reduced sensing time and local processing
- Ability to cope with hidden terminal problem

Limitation: existing approaches do not exploit space-time dimensions

Cooperative PSD cartography

Idea: CRs collaborate to form a spatial map of the RF spectrum

Goal: Find PSD map
$$\Phi(x, f)$$
 across

space $x \in \mathbb{R}^2$ and frequency $f \in \mathbb{R}$

> Approach: basis expansion of $\Phi(x, f)$

J. A. Bazerque and G. B. Giannakis, "Distributed spectrum sensing for cognitive radio networks by exploiting sparsity," *IEEE Transactions on Signal Processing*, pp. 1847-1862, March 2010.

Modeling

- Transmitters $Tx_s, s = 1, \dots, N_s$
- Sensing CRs $CR_r, r = 1 : N_r$
- Frequency bases $b_{\nu}(f), \ \nu = 1 : N_b$

 $f_k, \ k = 1 : K$

Sensed frequencies

Sparsity present in space and frequency

Space-frequency basis expansion Find $\theta_{s\nu} \Rightarrow$ Tx-power of source s over frequency band ν Data $\phi_{r\nu} \Rightarrow$ Rx-power at cognitive radio CR_r γ_{2r} $\phi = \Gamma \theta + e$ γ_{1r} γ_{3r} Estimate sparse θ to find PSD at CR_r $\hat{\theta} = \arg \min_{\theta} ||\phi - \Gamma \theta||_2^2 + \lambda ||\theta||_1$ Sparsity-promoting regularization

Distributed recursive implementation

Consensus-based approach

Solve locally

$$\begin{split} \hat{\theta} &= \ \mathrm{arg\,min}_{\boldsymbol{\theta}_r} \ ||\phi_r - \Gamma_r \boldsymbol{\theta}_r||_2^2 + \frac{\lambda}{M} ||\boldsymbol{\theta}_r||_1 \\ \mathrm{s.to} \quad \boldsymbol{\theta}_r &= \boldsymbol{\theta}_{r'}, \ \forall r' \in \mathcal{N}_r \end{split}$$

Constrained optimization using ADMM

RF spectrum cartography

5 sources

NNLS

■ $N_s = 121$ candidate locations, $N_r = 50$ CRs

Lasso

As a byproduct, Lasso localizes all sources via variable selection

Simulated test: PSD map estimation

Distributed consensus with fading

Starting from a local estimate, sensors reach consensus

Spline-based PSD cartography

Q: How about shadowing?

Path-loss

Shadowing

A: Basis expansion with coefficient functions

$$\Phi(\mathbf{x}, f) = \sum_{\nu=1}^{N_b} g_{\nu}(\mathbf{x}) b_{\nu}(f)$$

> $g_{\nu}(\mathbf{x})$: unknown dependence on spatial variable **x**

J. A. Bazerque, G. Mateos, and G. B. Giannakis, ``Group-Lasso on Splines for Spectrum Cartography," *IEEE Transactions on Signal Processing,"* pp. 4648-4663, October 2011.
Frequency basis expansion

PSD of Tx source $s \in \{1, \ldots, N_s\}$ is $\Phi_s(f)$

Basis functions

- > Accommodate prior knowledge \Rightarrow raised-cosine
- > Sharp transitions (regulatory masks) \Longrightarrow rectangular, non-overlapping
- > Overcomplete basis set (large N_b) \Rightarrow robustness

Spatial PSD model

Spatial loss function $l_s(x): \mathbb{R}^2 \to \mathbb{R} \implies \mathsf{Unknown}$

> Per sub-band factorization in space and frequency (indep. of N_s)

Goal: estimate PSD atlas as $\widehat{\Phi}(x, f) = \sum_{\nu=1}^{N_b} \widehat{g}_{\nu}(x) b_{\nu}(f)$

- Avoid overfitting by promoting smoothness
- > Nonparametric basis selection ($\hat{g}_{\nu} \neq 0 \Rightarrow b_{\nu}(f)$ selected)

Thin-plate splines solution

Proposition 1: Estimates $\{\hat{g}_{\nu}\}_{\nu=1}^{N_b}$ (P1) are thin-plate splines [Duchon' 77]

$$\widehat{g}_{\nu}(\boldsymbol{x}) = \sum_{r=1}^{N_r} \widehat{\beta}_{\nu r} K(||\boldsymbol{x} - \boldsymbol{x}_r||) + \widehat{\alpha}_{\nu 1}' \boldsymbol{x} + \widehat{\alpha}_{\nu 0}$$

where $K(\rho)$ is the radial basis function $K(\rho) = \rho^2 \log(\rho)$, and

$$\widehat{eta}_{
u} := [\widehat{eta}_{
u 1}, \dots, \widehat{eta}_{
u N_r}] \in \mathcal{B} := \left\{ eta : \sum_r eta_r = 0, \sum_r eta_r x_r = 0, x_r \in \mathcal{X}
ight\}.$$

- Unique, closed-form, finitely-parameterized minimizers!
- **Q1**: How to estimate $\{\alpha_{\nu}, \beta_{\nu}\}_{\nu=1}^{N_b}$ based on φ ?
- Q2: How does (P1) perform basis selection?

Lassoing bases

(P1) equivalent to group Lasso estimator [Yuan-Lin' 06]

> Matrices (
$$\mathcal{X}$$
 and \mathcal{F} dependent)
i) $\mathbf{T} := \begin{bmatrix} 1 & x'_1 \\ \vdots & \vdots \\ 1 & x'_{N_r} \end{bmatrix} = [\mathbf{Q}_1 \mathbf{Q}_2][\mathbf{R}' \mathbf{0}]', \text{ ii) } [\mathbf{K}]_{rl} := K(||\mathbf{x}_r - \mathbf{x}_l||), \text{ iii) } [\mathbf{B}]_{n\nu} := b_{\nu}(f_n)$

Proposition 2: Minimizers $\{\hat{\alpha}_{\nu}, \hat{\beta}_{\nu}\}_{\nu=1}^{N_b}$ (P1) are fully determined by $\hat{\boldsymbol{\zeta}} := \arg\min_{\boldsymbol{\zeta}} ||\mathbf{y} - \mathbf{X}\boldsymbol{\zeta}||_2^2 + \mu \sum_{\nu=1}^{N_b} ||\boldsymbol{\zeta}_{\nu}||_2 \qquad \text{w/ } \mathbf{y} := \begin{bmatrix} \varphi \\ 0 \end{bmatrix}, \ \mathbf{X} := \begin{bmatrix} \mathbf{B} \otimes \mathbf{I} \\ \mathbf{I} \otimes \mathbf{F}(\lambda, \mathbf{T}, \mathbf{K}, \mathbf{B}) \end{bmatrix}$ $\operatorname{as} [\hat{\beta}'_{\nu}, \hat{\alpha}'_{\nu}]' = \operatorname{bdiag}(\mathbf{Q}_2, \mathbf{I})[\mathbf{K}\mathbf{Q}_2 \ \mathbf{T}]^{-1}\hat{\boldsymbol{\zeta}}_{\nu}.$

Group Lasso encourages sparse factors $\widehat{\zeta}_{
u}$

Full-rank mapping:
$$\hat{\zeta}_{\nu} = 0 \Rightarrow \hat{g}_{\nu}(x) \equiv 0$$

Simulated test

- $N_s = 2$ sources; raised cosine pulses
- N_r = 50 sensing CRs, N = 64 sampling frequencies
- $N_b = (2 \times 15 \times 2) = 60$; (roll off x center frequency x bandwidth)

Numerical test IEEE 802.11

Maps estimated under fading + shadowing + overlapping bases

-10 (dBi)

-20

Semi-supervised DL for PSD maps

- Signal model $oldsymbol{\pi}_t = \mathbf{G}_t \mathbf{p}_t \quad \Rightarrow \quad oldsymbol{\pi} = \mathbf{Ds}$
 - \succ Rx-power measured by a few CRs $\mathcal{P}_{\mathcal{S}_t}(\mathbf{y}_t) = \mathcal{P}_{\mathcal{S}_t}(\pi_t + \mathbf{v}_t)$

Batch formulation

TRAINING PHA:

Online algorithm via exponentially weighted criterion

S.-J. Kim and G. B. Giannakis, "Cognitive Radio Spectrum Prediction using Dictionary Learning," *Proc. of Globecom Conf.*, Atlanta, GA, 2013.

Recap: PHY sensing via RF cartography

Power spectral density (PSD) maps

- Capture ambient power in space-time-frequency
- Can identify "crowded" regions to be avoided

Channel gain (CG) maps

- Time-frequency channel from any-to-any point
- CRs adjust Tx power to min. PU disruption

S.-J. Kim, E. Dall'Anese, and G. B. Giannakis, "Cooperative Spectrum Sensing for Cognitive Radios using Kriged Kalman Filtering," *IEEE J. Selected Topics in Signal Processing*, pp. 24-36, Feb. 2011. ⁸⁴

60

40

20

20

-5 dB

-70

-80

[dB]

180

Channel gain cartography

CG after averaging small-scale fading (dB)

Approach: spatial LMMSE interpolation (Kriging) + KF for tracking channel dynamics

 Payoffs: tracking PU activities; accurate interference models; efficient resource allocation
 Outlook: jointly optimal PHY CR sensing and access

E. Dall'Anese, S.-J. Kim, and G. B. Giannakis, "Channel Gain Map Tracking via Distributed Kriging," *IEEE Trans. on Vehicular Technology*, pp. 1205-1211, March 2011.

Any-to-any CG estimation

- Shadowing model-free approach
 - Slow variations in shadow fading
 - Low-rank any-to-any CG matrix $\hat{\mathbf{G}}$

Approach: low-rank matrix completion

$$\min_{\mathbf{C},\mathbf{W}} \|\mathcal{P}_{\mathcal{S}}(\mathbf{G} - \mathbf{C}\mathbf{W}')\|_{F}^{2} + \lambda(\|\mathbf{C}\|_{F}^{2} + \|\mathbf{W}\|_{F}^{2})$$

Payoffs: global view of any-to-any CGs; real-time propagation metrics; efficient resource allocation

Estimated CG map

Outlook: kernel-based extrapolator for missing CR-to-PU measurements, or future time intervals

S.-J. Kim and G. B. Giannakis, "Dynamic Network Learning for Cognitive Radio Spectrum Sensing," *Proc. of Intl. Workshop on Comp. Advances in Multi-Sensor Adaptive Process.*, Saint Martin, 2013.⁸⁶

PU power and CR-PU link learning

Reduce overhead in any-to-any CG mapping

- Learn CGs only between CRs and PUs
- Online detection of active PU transmitters

Approach: blind dictionary learning

 $\min_{\mathbf{G},\mathbf{P}} \|\mathbf{\Pi} - \mathbf{G}\mathbf{P}\|_F^2 + \lambda_1 \|\mathbf{P}\|_1$

Payoffs: tracking PU activities; efficient resource allocation

Outlook: missing data due to limited sensing; distributed and robust algorithms

S.-J. Kim, N. Jain, and G. B. Giannakis, "Joint Link Learning and Cognitive Radio Sensing," in *Proc. of Asilomar Conf. on Signals, Systems, and Computers*, Pacific Grove, CA, Nov. 2011.

Takeaways

PHY layer spatiotemporal sensing via RF cartography
 > Space-time-frequency view of interference and channel gains

I Identify idle bands across space

- Aid dynamic spectrum access policies
- PU/source localization and tracking

Parsimony via sparsity and distribution via consensus
 Lasso, group Lasso on splines, and method of multipliers

Roadmap

Dynamic network delay cartography

- Unveiling network anomalies via sparsity and low rank
- Network-wide link count prediction
- RF cartography for cognition at the PHY
- Conclusions and future research directions

The big picture ahead...

- Network cartography: succinct depiction of the network state
- Vision: use atlas to enable spatial re-use, hand-off, localization, Tx-power tracking, resource allocation, health monitoring, and routing

Concluding summary

- Dynamic network cartography
 - Framework to construct maps of the dynamic network state
 - Real-time, distributed scalable algorithms for large-scale networks
- Global state mapping from incomplete and corrupted data
 - Path delay and link traffic maps
 - Prompt and accurate identification of traffic anomalies
 - > PHY layer sensing in wireless CR networks via RF cartography
- Statistical SP toolbox
 - Sparsity-cognizant learning, low-rank modeling
 - Kriged Kalman filtering of dynamical processes over networks
 - Semi-supervised dictionary learning
 - Distributed optimization via the ADMM

Questions?

University of Minnesota http://spincom.umn.edu

Dr. J. A. Bazerque UofM

Dr. S. J. Kim UofM

Dr. E. Dall'Anese UofM

M. Mardani UofM

Dr. P. A. Forero SPAWAR

Prof. K. Rajawat IIT Kanpur