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Abstract: Multiple-Input Multiple-Output (MIMO) digital communications stan-
dards usually acquire Channel State Information (CSI) by means of supervised
algorithms, which implies a loss of performance since pilot symbols do not convey
information. We propose to obtain this CSI by using the so-called semi-blind tech-
niques, which combine both supervised and unsupervised (blind) methods. The
key idea consists in introducing a decision criterion to determine when the channel
has suffered a significant change. In such a case, transmission of pilot symbols is
required. The use of this criterion also allows us to determine the time instants in
which CSI has to be sent to the transmitter from the receiver through a low-cost
feedback channel.
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1. Introduction

The main task when transmitting over channels with multiple antennas at the
transmitter and/or at the receiver side is the separation or equalization of the
transmitted data. Linear Transmit Processing (LTP), also termed Linear Precoding

(LP), is a powerful method to separate signals in Multiple-Input Multiple-Output

(MIMO) systems since it reduces computational costs and power consumption at
the receiver end. Thus, the equalization task is performed at the transmitter, so
the channel is pre-equalized or precoded before transmission with the goal of sim-
plifying one side of the link and avoiding filter operations at the receiver. Such
an operation prior to transmission is only possible for a centralized transmitter,
e.g. the base-station in the downlink of a cellular system. Moreover, in case of a
multiuser scenario with non-cooperative receivers, the users cannot cooperatively
transform the received signals. Thus, transmit filters are necessary to separate
signals for different users before transmission through a fading channel. Therefore,
the advantages of carrying out this pre-equalization of channel effects at the trans-
mitter are clear, compared to traditional receiver and equalization alternatives.
Although Wiener Filtering (WF) for precoding has been dealt with by only a few
authors [15] compared to other criteria, Wiener linear precoding is an attractive
transmit optimization that minimizes the Mean Square Error (MSE) between the
transmitted and received symbols [8, 14,17,19].
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The design of LP schemes has been widely studied for the ideal case in which
Channel State Information (CSI) is perfectly known at the transmitter side [8,14,
17, 19]. However, for transmit processing the major difficulty is the availability of
instantaneous CSI at the transmitter. Thus, this work is focused on determining
channel changes which will allow us to update the CSI available at the transmitter
side by sending appropriate information through a reverse (also termed feedback)
channel. Most recent wireless communications standards include such a feedback
channel for sending user link parameters. For example, Worldwide Interoperability

for Microwave Access (WiMAX) standard uses this channel to send an index for
selecting the most adequate code according to channel conditions [11]. However,
to the knowledge of the authors, none of the current standards —even those under
development— make use of such information to decide whether pilot symbols must
be sent or not.

In this work, we propose a novel approach termed Decision-Aided Semi-Blind

Equalization (DASBE), which allows us to reduce penalizations introduced by the
use of pilot symbols and to get an efficient utilization of the feedback channel. The
main difficulty is to detect channel variations by using a simple decision criterion.
The proposed criterion compares the channel matrix estimated using an unsuper-
vised algorithm, to the previous estimate obtained by a supervised one. Pilot
symbols are required only when channel variations are significant with respect to a
previously selected threshold. A similar scheme has been proposed by the authors
in [7,10], where the transmitter could send two types of frames: frames containing
only pilot symbols or frames containing only user symbols. This setup differs from
the frame structure used in current standards, in which frames are composed by
both pilot and user symbols. For this reason, the decision criterion proposed in
DASBE is used to determine the instants where pilot symbols can be eliminated
(or reduced) in standards frames.

This work is organized as follows. Section 2. shows our digital communica-
tions system. Section 3. reviews some supervised and unsupervised algorithms
for channel estimation and source data recovery. Section 4. proposes the DASBE
approach. Representative computer simulations are presented in Section 5. and
Section 6. states some concluding remarks.

Vectors and matrices are denoted by lower case bold and capital bold letters,
respectively. We use E[.], tr(.), (.)∗, (.)T, (.)H, det(.), ln(.) and ‖.‖2 for expectation,
trace of a matrix, complex conjugation, transposition, conjugate transposition,
determinant of a matrix, natural logarithm and Euclidean norm, respectively. The
i-th element of a vector x is xi. h(.) is used to denote a scalar function and h′(.)
and h′′(.) denote its first and second dereivatives.

2. System Model

We consider a MIMO system withNt transmit antennas andNr receive antennas, as
plotted in Figure 1. The user symbols are expressed as u[n] = [u1[n], . . . , uNr

[n]]T

and they are used by the encoder to generate the transmitted signal denoted by
x(n) = [x1(n), . . . , xNt

(n)]T. Suppose that xi(n) is transmitted from the i–th
transmit antenna to the j–th receive antenna through the path hji[q]. Thus, we
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Fig. 1 System with precoding over flat MIMO channels.
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Fig. 2 MIMO system with linear precoding.

have that the received signals (observations) presents the form

y[n] = H[q]x[n] + n[n], (1)

where n = 0, 1, 2, . . . corresponds to sample index, q denotes time-slot, and n(n) =
[n1(n), . . . , nNr

(n)]T contains Additive White Gaussian Noise (AWGN) with co-
variance matrix Cn. We assume that the sources are transmitted in frames of NB

symbols and that the channel remains constant during several frames, i.e. the index
q is unchanged during those frames. It can be demonstrated that this discrete-time
model is equivalent to the continuous-time one only if Inter–Symbol Interference

(ISI) between samples is avoided, i.e. if the Nyquist criterion is satisfied. In that
case, we are able to reconstruct the original continuous signal from samples by
means of interpolation. Hereafter, we assume this channel model, known as time-
varying flat block fading channel.

As it was mentioned above, in order to simplify the requirements at the re-
ceiver, the equalization task can be performed at the transmitter so the channel
is precoded before transmission, as plotted in Figure 1. Such an operation —prior
to transmission— is only possible when a centralized transmitter is used (e.g. the
base-station for the downlink of a cellular system). The goal is to find the opti-
mum transmit and receive filters, F ∈ C

Nt×Nr and G = gI ∈ C
Nr×Nr , respectively.

Note that Nr is the number of scalar data streams. The resulting communications
system is shown in Figure 2, in which the data symbols u[n] are passed through the
transmit filter F to form the transmit signal x[n] = Fu[n] ∈ C

Nt. The constraint
for the transmit energy must be fulfilled, i.e.

E
[

||x[n]||22
]

= tr
(

FCuF H
)

≤ Etr,

where Cu = E[u[n]uH[n]] is the correlation between the uncoded symbols and Etr

is the total transmitted energy. Thus, the received signal is given by

y[n] = HFu[n] + n[n]. (2)
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After multiplying by the gain g, we get the estimated symbols

û[n] = gy[n] = gHFu[n] + gn[n] ∈ C
Nr . (3)

Therefore, the implementation of precoded systems implies very simple receivers
since the observations are only multiplied by the gain factor g. Clearly, the re-
striction about common weights g for all the receivers is not necessary in case of
decentralized receivers.

As mentioned before, we consider Wiener linear filtering, whose optimization
consists in minimizing the MSE with a transmitted energy constraint, i.e.

{FWF, gWF} = arg min
{F ,g}

E
[

||u[n] − û[n]||22
]

s.t.: tr(FCuF H) ≤ Etr. (4)

Note that such a constraint is necessary to avoid the dependence of the result-
ing transmitted energy on the channel realization. So, the transmitted energy
constraint mentioned above might be the maximum value for poor channel real-
izations and thus the respective precoder solution is not valid. The transmitter
may also not use the whole available transmitted energy, and therefore the final
quality would not be as good as possible, since it could be improved by using more
transmitted energy. In [8, 17], it is shown that the solution for the linear filters
designed using that MSE criterion is expressed as

FWF = g−1
WF

(

HHH + ψI
)−1

HH,

gWF =

√

√

√

√

tr
(

(HHH + ψI)
−2

HHCuH
)

Etr
, (5)

where ψ = tr(Cn)
Etr

.

3. Source Data Recovery Methods

Current digital communications standards define a frame as a sequence of pilot and
user symbols. Supervised algorithms use the pilot symbols to estimate the channel
(and to recover the transmitted signals), while unsupervised (blind) approaches
discard this information [9]. In particular, in order to recover transmitted signals
(sources), we will use a linear system whose weight matrix W [n] ∈ C

Nr×Nr (termed
also recovering matrix ) will be obtained using some supervised or unsupervised
algorithm. The outputs of this system are computed using

z[n] = W H[n]y[n]. (6)

3.1 Supervised Approach

We consider the utilization of a supervised approach to estimate the channel matrix
H using as a reference the model in Eq. (1), in which y[n] and x[n] represent
observations and sources, respectively.
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An important family of adaptive filtering algorithms arises from the minimiza-
tion of the MSE between the outputs, z[n], and the sources, x[n] [13, 18]. Mathe-
matically, the cost function is defined as

JMSE =

NB
∑

i=1

E
[

|zi[n] − xi[n]|2
]

= E
[

tr
(

(W H[n]y[n] − d[n])(W H[n]y[n] − x[n])H
)]

. (7)

Then, the recovering matrix is updated using the following gradient algorithm

W [n+ 1] = W [n] − µ ∇W JMSE[n], (8)

where ∇W JMSE is the gradient of JMSE with respect to W , i.e.

∇W JMSE = E
[

y[n](W H[n]y[n] − x[n])H
]

. (9)

The classical stability analysis for gradient–based algorithms consists in finding
the point in which the gradient vanishes and defining the Hessian matrix whose
coefficients are given by the second derivatives of J [4]. In particular, it can be
demonstrated that the stationary points of the rule defined by Eq. (8) are

∇W JMSE = 0 ⇒ W = C−1
y Cyx, (10)

where Cy = E[y[n]yH[n]] is the autocorrelation of the observations and Cyx =
E[y[n]xH[n]] is the cross-correlation between the observations and the desired sig-
nals. In practice, these desired signals are considered as known only during a finite
number of instants (pilot symbols) in which the estimation is used to recover the
transmitted symbols. For this reason, the performance of this type of algorithms
is degraded in the presence of calibration errors.

3.2 Unsupervised Approach

The transmission of pilot symbols and the prior knowledge about channel matrices
can be avoided by using Blind Source Separation (BSS) algorithms [5, 9, 16]. BSS
methods simultaneously estimate the mixing matrix and the realizations of the
source vector. In particular, we consider the model given by Eq. (2), where y[n]
and u[n] represent observations and sources, respectively. The joint matrix HF is
the matrix to be estimated.

One of the best known BSS algorithms has been approached by Bell and Se-
jnowski [3]. The idea proposed by these authors is to obtain the weighted coef-
ficients of a Artificial Neural Network, W [n], in order to maximize the mutual
information (MI) between the outputs before the activation function h(z[n]) =
h(W H[n]y[n]), where h(.) is the activation function, and the inputs y[n]. The
resulting cost function is given by

JMI(W [n]) = ln(det(W H[n])) +

Nt
∑

i=1

E[ln(h′i(zi[n]))], (11)
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where hi is the i–th element of the vector h(z[n]), and ′ denotes the first deriva-
tive. The maximum of this cost function can be obtained using a relative gradient
algorithm [1,2], which gives

W [n+ 1] = W [n] + µW [n]W H[n]
(

z[n] fH(y[n]) − W−H[n]
)

= W [n] + µW [n]
(

z[n]fH(z[n]) − I
)

. (12)

where f(z) = [−h′′(z1)/h
′(z1), ...,−h

′′(zNr
)/h′(zNr

)]T . The expression in Eq. (12)
admits an interesting interpretation by means of the use of the non-linear function
f(z) = z∗(|z|2 − 1). In this case, Castedo and Macchi [6] have shown that the Bell
and Sejnowski rule can be interpreted as an extension of the Constant Modulus

Algorithm (CMA) proposed by Godard [12].

4. Decision-Aided Semi-Blind Equalization
(DASBE)

Recent digital communications standards include a low-cost feedback channel which
can be used to send estimates obtained using a supervised approach. Using this
information, the transmitter adapts the precoding matrix F according to existing
channel conditions. This approach has several limitations: firstly, transmission of
pilot symbols penalizes throughput and secondly, as a consequence, overhead of the
feedback channel appears in case of CSI must be sent from the receiver each time
a new frame is acquired. In addition, a large number of pilot symbols is needed to
guarantee the convergence of the adaptive algorithm in Eq. (8) or to ensure that
the matrix Cy in Eq. (10) is not singular.

In this section, we present the novel DASBE approach, which combines super-
vised and unsupervised techniques to mitigate the limitations found in classical
approaches. We denote by Wu[n] and Ws[n] the respective matrices for the unsu-
pervised and supervised modules.

We consider two frames types: firstly, classical frames formed by pilots and user
symbols, and secondly, user frames containing only user symbols. The following
procedure is performed at the receiver side each time a classical frame is received:

� First, the supervised algorithm estimates the channel matrix H from pilot
symbols and, subsequently, computes the gain parameter gWF and the pre-
coding matrix F according to Eq. (5).

� The joint matrix HF (denoted by ĤF ) is computed and the unsupervised

algorithm is initialized so that Wu[n] = ĤF
−H

.

� The channel matrix H is sent to the transmitter through the feedback chan-
nel allowing the transmitter to update the precoding matrix F as given by
Eq. (5).

On the contrary, when user frames are received, the unsupervised algorithm (see
Eq. (12)) is adapted and the decision criterion is evaluated after processing all
the frame symbols. An “alarm” is sent to the transmitter through the feedback
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channel when that decision criterion indicates that a significant channel variation
has occurred. The user symbols included in both types of frames are recovered
using û[n] = gWFy[n].

An important question is how to design the decision module in order to detect
such channel variations. By combining Eqs. (2) and (6), the output z[n] can be
rewritten as a linear combination of the sources

z[n] = Γ [n]u[n], (13)

where Γ [n] = Wu
H[n]HF represents the overall mixing/separating system. Sources

are optimally recovered in case of selecting the matrix Wu[n] such that every out-
put extracts a different single source. This occurs when the matrix Γ [n] has the
form

Γ [n] = DP , (14)

where D is a diagonal invertible matrix and P is a permutation matrix. An
interesting consequence of using a linear precoder is that the permutation ambi-
guity associated to unsupervised algorithms is avoided because of the initialization

Wu[n] = ( ˆHF )
−H

. This implies that the data sources are recovered in the same
order as they were transmitted. Therefore, taking Eq. (14) into account, the opti-
mum separation matrix produces a diagonal matrix Γ [n] and thus, the mismatch
of Γ [n] with respect to a diagonal matrix allows us to measure channel variations.

Although channel matrices are unknown, we can use as a reference the esti-
mation ĤF obtained by means of the supervised approach. Thus, we compute
Γ [n] = Wu

H[n]ĤF after processing the symbols in a frame. Consequently, that
distance with respect to a diagonal matrix is measured using the following “error”
criterion:

Error[n] =

Nt
∑

i=1

Nt
∑

j=1,j 6=i

(

|γij [n]|2

|γii[n]|2
+

|γji[n]|2

|γii[n]|2

)

, (15)

where γii[n] denotes the i–th diagonal element of the matrix Γ [n]. A possibility for
determining when the channel has changed significantly is to compare the above
error value to some fixed threshold value (denoted by t), i.e. Error[n] > t would
mean that a classical frame (i.e. a frame with pilot and user symbols) is required.

5. Simulation Results

In order to show the performance achieved with the proposed DASBE approach,
we present results obtained by several computer simulations performed considering
that 10 000 QPSK symbols have been transmitted through a MIMO system in
blocks of 200 symbols each one (i.e. 50 frames). The system consists of four transmit
and four receive antennas. The channel matrix changes each 10 frames according
to the following model

H = (1 − α)H + αHnew,

where Hnew is a 4×4 complex matrix randomly generated according to a Gaussian
distribution. The rest of parameters used for DASBE has been: threshold of t = 0.1
and initial step-size parameter of µ = 0.001 for the unsupervised algorithm. The
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Fig. 3 BER versus SNR obtained using a classical approach.

following results have been obtained by averaging 1 000 independent realizations,
varying both channels and transmitted symbols.

Using a classical supervised approach, Figure 3 shows the performance in terms
of Bit Error Rate (BER) versus Signal–to–Noise Ratio (SNR) for a channel up-
dating parameter α = 0.05 and different percentages of pilot symbols per frame.
Specifically, we select 10%, which means that 20 symbols per frame are dedicated
to pilot symbols, and 50%, which corresponds to 100 pilots per frame. As a per-
formance bounds, the following curves are also plotted in Figure 3:

� BER curve when both perfect CSI and feedback channel are available between
the receiver and the transmitter side (labeled as Perfect CSI with feedback).

� BER curve without feedback channel (labeled as Perfect CSI ). In such a case,
the precoding matrix is never updated, which leads to a loss in performance
with respect to the previous situation with existing feedback channel.

Notice that the utilization of the feedback channel produces a considerable im-
provement in terms of BER and SNR (in fact, for the SNR plotted in this figure,
the system without feedback is not able to achieve a BER of 10−2). It is also appar-
ent that the classical approach needs 50% of pilot symbols to obtain a performance
close to the Perfect CSI with feedback.

Figure 4 plots the results obtained with the DASBE approach considering both
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Fig. 4 BER versus SNR obtained using DASBE.

10% and 50% percentages of pilot symbols per frame. Notice that using the DASBE
approach only the classical frames carry pilot symbols, while the user frames ex-
clusively contain data symbols. From Figure 4 it is apparent that the performance
is similar to that offered by the classical approach (see Figure 3), but with the
advantages of reducing the feedback channel overhead (see Figure 5) as well as the
amount of needed pilot symbols (see Figure 6).

Figure 5 presents the utilization of the feedback channel depending on the ap-
proach used to track channel variations. Note that the classical approach transmits
through the feedback channel each time a new frame is received, i.e. 50 times in
total (independently of the pilot symbols percentage). However, the channel uti-
lization for DASBE depends only on the decision criterion. It can be observed from
Figure 5 that the feedback channel utilization is considerably reduced in case of
implementing DASBE.

Finally, Figure 6 shows another important advantage of DASBE with respect to
the classical approach, which consists in a considerable reduction in the number of
needed pilot symbols. This is because pilots are included only when the degradation
of the channel estimates is too large (according to the previously fixed threshold).
Also note that for the DASBE approach, Figure 6 plots the mean number of pilot
symbols per frame considering the two frame types (i.e. classical and user frames)
required to transmit 50 frames.
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Fig. 5 Utilization of the feedback channel versus SNR obtained using a classical

approach and DASBE.

5.1 Remarkable Comments

It is important to note that in the case of the supervised estimation in Eq. (10),
the matrix Cy may be singular. When this occurs, we have decided to consider the
previous channel estimate. Moreover, for those frames in which the unsupervised
algorithm diverges, we have reduced the step-size parameter to µ = µ/10 and
initialized the algorithm to the matrix Wu[n] given by the previous frame.

Moreover, note that the BSS problem assumes that the observations are linear
mixtures of the sources. From Eq. (5) it is easy to verify that for LP systems,
assuming perfect CSI at the transmitter side, the joint matrix HF is diagonal
when ψ is close to zero or, equivalently, when SNR is large. In that case, BSS
methods are not justified. However, under realistic transmission scenarios, SNR is
usually constrained to the interval [5 dB, 15 dB] and perfect CSI is not available at
the transmitter, which produces a non–diagonal matrix HF that allows us to use
BSS algorithms.
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6. Conclusions

Given a communications system in which a block flat fading channel is considered,
we proposed an intuitive as well as simple method to detect channel variations.
This decision criterion is used to develop a novel hybrid approach which combines
both supervised and unsupervised algorithms. In case of significant channel varia-
tions, our system utilizes a supervised approach to estimate the channel coefficients,
which are sent to the transmitter through a low–cost feedback channel. Otherwise,
an unsupervised adaptive algorithm is used to track those channel variations. Sim-
ulation results have shown that the proposed approach is an attractive solution for
wireless systems since it provides an adequate BER with a low overhead caused by
transmitted pilot symbols and with reduced feedback channel occupancy.
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